Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given equations represents the same line as [tex]\( f(x) = 4x + 3 \)[/tex], we need to look for an equation with the same slope and [tex]\( y \)[/tex]-intercept as the given line equation. The given equation [tex]\( f(x) = 4x + 3 \)[/tex] is in slope-intercept form [tex]\( y = mx + b \)[/tex], where the slope [tex]\( m \)[/tex] is 4 and the [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex] is 3.
Let's analyze each given equation to find the one with the same slope (4) and correct [tex]\( y \)[/tex]-intercept.
### Option 1: [tex]\( y - 7 = 3(x - 1) \)[/tex]
This is in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Slope [tex]\( m \)[/tex]: 3
- Since the slope is 3, it does not match the slope of 4.
### Option 2: [tex]\( y - 1 = 3(x - 7) \)[/tex]
This is also in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Slope [tex]\( m \)[/tex]: 3
- Again, the slope is 3, which does not match the slope of 4.
### Option 3: [tex]\( y - 7 = 4(x - 1) \)[/tex]
This is in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Slope [tex]\( m \)[/tex]: 4
- Here, the slope is 4, which matches the slope of our given line. Now we check the point:
- Point [tex]\((x_1, y_1)\)[/tex] is [tex]\((1, 7)\)[/tex], which lies on the line.
So, the equation [tex]\( y - 7 = 4(x - 1) \)[/tex] has the correct slope and passes through the given point [tex]\((1, 7)\)[/tex]. It represents the same line.
### Option 4: [tex]\( y - 1 = 4(x - 7) \)[/tex]
This is also in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Slope [tex]\( m \)[/tex]: 4
- The slope is 4, which matches, but we need to check the point:
- Point [tex]\((x_1, y_1)\)[/tex] is [tex]\((7, 1)\)[/tex]. When we convert this to slope-intercept form, it results in a different line.
Based on the analysis, the correct option that represents the same line as [tex]\( f(x) = 4x + 3 \)[/tex] is:
[tex]\[ y - 7 = 4(x - 1) \][/tex]
This corresponds to Option 3.
Let's analyze each given equation to find the one with the same slope (4) and correct [tex]\( y \)[/tex]-intercept.
### Option 1: [tex]\( y - 7 = 3(x - 1) \)[/tex]
This is in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Slope [tex]\( m \)[/tex]: 3
- Since the slope is 3, it does not match the slope of 4.
### Option 2: [tex]\( y - 1 = 3(x - 7) \)[/tex]
This is also in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Slope [tex]\( m \)[/tex]: 3
- Again, the slope is 3, which does not match the slope of 4.
### Option 3: [tex]\( y - 7 = 4(x - 1) \)[/tex]
This is in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Slope [tex]\( m \)[/tex]: 4
- Here, the slope is 4, which matches the slope of our given line. Now we check the point:
- Point [tex]\((x_1, y_1)\)[/tex] is [tex]\((1, 7)\)[/tex], which lies on the line.
So, the equation [tex]\( y - 7 = 4(x - 1) \)[/tex] has the correct slope and passes through the given point [tex]\((1, 7)\)[/tex]. It represents the same line.
### Option 4: [tex]\( y - 1 = 4(x - 7) \)[/tex]
This is also in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Slope [tex]\( m \)[/tex]: 4
- The slope is 4, which matches, but we need to check the point:
- Point [tex]\((x_1, y_1)\)[/tex] is [tex]\((7, 1)\)[/tex]. When we convert this to slope-intercept form, it results in a different line.
Based on the analysis, the correct option that represents the same line as [tex]\( f(x) = 4x + 3 \)[/tex] is:
[tex]\[ y - 7 = 4(x - 1) \][/tex]
This corresponds to Option 3.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.