Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Which expression is equivalent to [tex]\(\frac{5 y^3}{(5 y)^{-2}}\)[/tex]?

A. [tex]\(y^5\)[/tex]
B. [tex]\(y^6\)[/tex]
C. [tex]\(125 y^3\)[/tex]
D. [tex]\(125 y^5\)[/tex]


Sagot :

To solve the expression [tex]\(\frac{5 y^3}{(5 y)^{-2}}\)[/tex], let's proceed step-by-step.

### Step 1: Simplify the denominator.
The denominator [tex]\((5y)^{-2}\)[/tex] can be written as:
[tex]\[ (5 y)^{-2} = \frac{1}{(5 y)^2} \][/tex]

### Step 2: Calculate [tex]\((5 y)^2\)[/tex]
[tex]\[ (5 y)^2 = 5^2 \cdot y^2 = 25 y^2 \][/tex]

### Step 3: Rewrite the expression with simplified denominator
The expression is now:
[tex]\[ \frac{5 y^3}{\frac{1}{25 y^2}} = 5 y^3 \cdot 25 y^2 \][/tex]

### Step 4: Combine the terms
Multiply the constants and add the exponents of [tex]\(y\)[/tex]:
[tex]\[ 5 \cdot 25 \cdot y^{3 + 2} = 125 \cdot y^5 \][/tex]

Therefore, the expression [tex]\(\frac{5 y^3}{(5 y)^{-2}}\)[/tex] simplifies to:
[tex]\[ \boxed{125 y^5} \][/tex]