Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve this problem step by step.
Part (b): Lines [tex]\( ax-3y=5 \)[/tex] and [tex]\( 4x-2y=3 \)[/tex] are parallel to each other. Find the value of [tex]\( a \)[/tex].
When two lines are parallel, their slopes are equal.
The slope of a line in the form [tex]\( Ax + By = C \)[/tex] is given by [tex]\( -A/B \)[/tex].
For the line [tex]\( ax - 3y = 5 \)[/tex]:
- The slope is [tex]\( -a / (-3) = a / 3 \)[/tex].
For the line [tex]\( 4x - 2y = 3 \)[/tex]:
- The slope is [tex]\( -4 / (-2) = 2 \)[/tex].
Since the lines are parallel, their slopes are equal:
[tex]\[ \frac{a}{3} = 2 \][/tex]
To solve for [tex]\( a \)[/tex]:
[tex]\[ a = 2 \cdot 3 \][/tex]
[tex]\[ a = 6 \][/tex]
So, the value of [tex]\( a \)[/tex] is 6.
Part (c): Lines [tex]\( 5x - 4y = 13 \)[/tex] and [tex]\( ax - 5y = 21 \)[/tex] are perpendicular to each other. Find the value of [tex]\( a \)[/tex].
When two lines are perpendicular, the product of their slopes is [tex]\( -1 \)[/tex].
For the line [tex]\( 5x - 4y = 13 \)[/tex]:
- The slope is [tex]\( -5 / (-4) = 5 / 4 \)[/tex].
For the line [tex]\( ax - 5y = 21 \)[/tex]:
- The slope is [tex]\( -a / (-5) = a / 5 \)[/tex].
Since the lines are perpendicular:
[tex]\[ \left( \frac{5}{4} \right) \left( \frac{a}{5} \right) = -1 \][/tex]
Simplify:
[tex]\[ \frac{5a}{20} = -1 \][/tex]
[tex]\[ \frac{a}{4} = -1 \][/tex]
To solve for [tex]\( a \)[/tex]:
[tex]\[ a = -1 \cdot 4 \][/tex]
[tex]\[ a = -4 \][/tex]
So, the value of [tex]\( a \)[/tex] is -4.
In conclusion:
- For the lines [tex]\( ax - 3y = 5 \)[/tex] and [tex]\( 4x - 2y = 3 \)[/tex] to be parallel, [tex]\( a = 6 \)[/tex].
- For the lines [tex]\( 5x - 4y = 13 \)[/tex] and [tex]\( ax - 5y = 21 \)[/tex] to be perpendicular, [tex]\( a = -4 \)[/tex].
Part (b): Lines [tex]\( ax-3y=5 \)[/tex] and [tex]\( 4x-2y=3 \)[/tex] are parallel to each other. Find the value of [tex]\( a \)[/tex].
When two lines are parallel, their slopes are equal.
The slope of a line in the form [tex]\( Ax + By = C \)[/tex] is given by [tex]\( -A/B \)[/tex].
For the line [tex]\( ax - 3y = 5 \)[/tex]:
- The slope is [tex]\( -a / (-3) = a / 3 \)[/tex].
For the line [tex]\( 4x - 2y = 3 \)[/tex]:
- The slope is [tex]\( -4 / (-2) = 2 \)[/tex].
Since the lines are parallel, their slopes are equal:
[tex]\[ \frac{a}{3} = 2 \][/tex]
To solve for [tex]\( a \)[/tex]:
[tex]\[ a = 2 \cdot 3 \][/tex]
[tex]\[ a = 6 \][/tex]
So, the value of [tex]\( a \)[/tex] is 6.
Part (c): Lines [tex]\( 5x - 4y = 13 \)[/tex] and [tex]\( ax - 5y = 21 \)[/tex] are perpendicular to each other. Find the value of [tex]\( a \)[/tex].
When two lines are perpendicular, the product of their slopes is [tex]\( -1 \)[/tex].
For the line [tex]\( 5x - 4y = 13 \)[/tex]:
- The slope is [tex]\( -5 / (-4) = 5 / 4 \)[/tex].
For the line [tex]\( ax - 5y = 21 \)[/tex]:
- The slope is [tex]\( -a / (-5) = a / 5 \)[/tex].
Since the lines are perpendicular:
[tex]\[ \left( \frac{5}{4} \right) \left( \frac{a}{5} \right) = -1 \][/tex]
Simplify:
[tex]\[ \frac{5a}{20} = -1 \][/tex]
[tex]\[ \frac{a}{4} = -1 \][/tex]
To solve for [tex]\( a \)[/tex]:
[tex]\[ a = -1 \cdot 4 \][/tex]
[tex]\[ a = -4 \][/tex]
So, the value of [tex]\( a \)[/tex] is -4.
In conclusion:
- For the lines [tex]\( ax - 3y = 5 \)[/tex] and [tex]\( 4x - 2y = 3 \)[/tex] to be parallel, [tex]\( a = 6 \)[/tex].
- For the lines [tex]\( 5x - 4y = 13 \)[/tex] and [tex]\( ax - 5y = 21 \)[/tex] to be perpendicular, [tex]\( a = -4 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.