Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the polynomial that represents the sum of the given polynomials, we need to add their corresponding coefficients. Let's break it down step-by-step.
We have two polynomials:
1. [tex]\( 3z^2 + 7z + 3 \)[/tex]
2. [tex]\( 5x^2 + 12z \)[/tex]
Firstly, note that the variables [tex]\( z \)[/tex] and [tex]\( x \)[/tex] are inconsistently used in the polynomials above. For the sake of consistent summation, we will presume they both represent the same variable, [tex]\( z \)[/tex]. Here are the steps to add these polynomials:
1. Identify the coefficients of the polynomials.
- For [tex]\( 3z^2 + 7z + 3 \)[/tex]:
- Coefficient of [tex]\( z^2 \)[/tex]: 3
- Coefficient of [tex]\( z \)[/tex]: 7
- Constant term: 3
- For [tex]\( 5x^2 + 12z \)[/tex] (treating [tex]\( x \)[/tex] as [tex]\( z \)[/tex]):
- Coefficient of [tex]\( z^2 \)[/tex]: 5
- There is no coefficient for the linear term ([tex]\( z \)[/tex]), so it is 0.
- Coefficient of [tex]\( z \)[/tex]: 12
- Constant term: There is no constant term, so it is 0.
2. Sum the corresponding coefficients.
- Sum of the coefficients of [tex]\( z^2 \)[/tex]: 3 (from the first polynomial) + 5 (from the second polynomial) = 8
- Sum of the coefficients of [tex]\( z \)[/tex]: 7 (from the first polynomial) + 12 (from the second polynomial) = 19
- Sum of the constant terms: 3 (from the first polynomial) + 0 (from the second polynomial) = 3
Putting it all together, the summed polynomial is:
[tex]\[ 8z^2 + 19z + 3 \][/tex]
Therefore, the polynomial that represents the sum is:
[tex]\[ 8x^2 + 19x + 3 \][/tex]
So the correct answer is:
A. [tex]\( 8x^2 + 19x + 3 \)[/tex]
We have two polynomials:
1. [tex]\( 3z^2 + 7z + 3 \)[/tex]
2. [tex]\( 5x^2 + 12z \)[/tex]
Firstly, note that the variables [tex]\( z \)[/tex] and [tex]\( x \)[/tex] are inconsistently used in the polynomials above. For the sake of consistent summation, we will presume they both represent the same variable, [tex]\( z \)[/tex]. Here are the steps to add these polynomials:
1. Identify the coefficients of the polynomials.
- For [tex]\( 3z^2 + 7z + 3 \)[/tex]:
- Coefficient of [tex]\( z^2 \)[/tex]: 3
- Coefficient of [tex]\( z \)[/tex]: 7
- Constant term: 3
- For [tex]\( 5x^2 + 12z \)[/tex] (treating [tex]\( x \)[/tex] as [tex]\( z \)[/tex]):
- Coefficient of [tex]\( z^2 \)[/tex]: 5
- There is no coefficient for the linear term ([tex]\( z \)[/tex]), so it is 0.
- Coefficient of [tex]\( z \)[/tex]: 12
- Constant term: There is no constant term, so it is 0.
2. Sum the corresponding coefficients.
- Sum of the coefficients of [tex]\( z^2 \)[/tex]: 3 (from the first polynomial) + 5 (from the second polynomial) = 8
- Sum of the coefficients of [tex]\( z \)[/tex]: 7 (from the first polynomial) + 12 (from the second polynomial) = 19
- Sum of the constant terms: 3 (from the first polynomial) + 0 (from the second polynomial) = 3
Putting it all together, the summed polynomial is:
[tex]\[ 8z^2 + 19z + 3 \][/tex]
Therefore, the polynomial that represents the sum is:
[tex]\[ 8x^2 + 19x + 3 \][/tex]
So the correct answer is:
A. [tex]\( 8x^2 + 19x + 3 \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.