Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the sum of the given polynomials, we need to add the corresponding coefficients of each term. Let's break down the process step-by-step.
The polynomials given are:
[tex]\[ P(x) = x^2 - x + 7 \][/tex]
[tex]\[ Q(x) = 9x^2 + 6 \][/tex]
1. Identify the coefficients for each term:
- For [tex]\(P(x) = x^2 - x + 7\)[/tex]:
- Coefficient of [tex]\(x^2\)[/tex]: [tex]\(1\)[/tex]
- Coefficient of [tex]\(x\)[/tex]: [tex]\(-1\)[/tex]
- Constant term: [tex]\(7\)[/tex]
- For [tex]\(Q(x) = 9x^2 + 6\)[/tex]:
- Coefficient of [tex]\(x^2\)[/tex]: [tex]\(9\)[/tex]
- Coefficient of [tex]\(x\)[/tex]: [tex]\(0\)[/tex]
- Constant term: [tex]\(6\)[/tex]
2. Add the coefficients of the [tex]\(x^2\)[/tex] terms:
[tex]\[ 1\text{ (from } x^2\text{ in } P(x)) + 9\text{ (from } x^2\text{ in } Q(x)) = 10 \][/tex]
So the coefficient of [tex]\(x^2\)[/tex] in the sum is [tex]\(10\)[/tex].
3. Add the coefficients of the [tex]\(x\)[/tex] terms:
[tex]\[ -1\text{ (from } x\text{ in } P(x)) + 0\text{ (from } x\text{ in } Q(x)) = -1 \][/tex]
So the coefficient of [tex]\(x\)[/tex] in the sum is [tex]\(-1\)[/tex].
4. Add the constant terms:
[tex]\[ 7\text{ (from constant term in } P(x)) + 6\text{ (from constant term in } Q(x)) = 13 \][/tex]
So the constant term in the sum is [tex]\(13\)[/tex].
5. Form the resulting polynomial:
By combining all these terms, the resulting polynomial is:
[tex]\[ 10x^2 - x + 13 \][/tex]
Therefore, the sum of the polynomials is:
[tex]\[ \boxed{B. \; 10x^2 - x + 13} \][/tex]
The polynomials given are:
[tex]\[ P(x) = x^2 - x + 7 \][/tex]
[tex]\[ Q(x) = 9x^2 + 6 \][/tex]
1. Identify the coefficients for each term:
- For [tex]\(P(x) = x^2 - x + 7\)[/tex]:
- Coefficient of [tex]\(x^2\)[/tex]: [tex]\(1\)[/tex]
- Coefficient of [tex]\(x\)[/tex]: [tex]\(-1\)[/tex]
- Constant term: [tex]\(7\)[/tex]
- For [tex]\(Q(x) = 9x^2 + 6\)[/tex]:
- Coefficient of [tex]\(x^2\)[/tex]: [tex]\(9\)[/tex]
- Coefficient of [tex]\(x\)[/tex]: [tex]\(0\)[/tex]
- Constant term: [tex]\(6\)[/tex]
2. Add the coefficients of the [tex]\(x^2\)[/tex] terms:
[tex]\[ 1\text{ (from } x^2\text{ in } P(x)) + 9\text{ (from } x^2\text{ in } Q(x)) = 10 \][/tex]
So the coefficient of [tex]\(x^2\)[/tex] in the sum is [tex]\(10\)[/tex].
3. Add the coefficients of the [tex]\(x\)[/tex] terms:
[tex]\[ -1\text{ (from } x\text{ in } P(x)) + 0\text{ (from } x\text{ in } Q(x)) = -1 \][/tex]
So the coefficient of [tex]\(x\)[/tex] in the sum is [tex]\(-1\)[/tex].
4. Add the constant terms:
[tex]\[ 7\text{ (from constant term in } P(x)) + 6\text{ (from constant term in } Q(x)) = 13 \][/tex]
So the constant term in the sum is [tex]\(13\)[/tex].
5. Form the resulting polynomial:
By combining all these terms, the resulting polynomial is:
[tex]\[ 10x^2 - x + 13 \][/tex]
Therefore, the sum of the polynomials is:
[tex]\[ \boxed{B. \; 10x^2 - x + 13} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.