At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

What is the domain of the function [tex]\( y = \sqrt{x} \)[/tex]?

A. [tex]\(-\infty \ \textless \ x \ \textless \ \infty\)[/tex]

B. [tex]\(0 \ \textless \ x \ \textless \ \infty\)[/tex]

C. [tex]\(0 \leq x \ \textless \ \infty\)[/tex]

D. [tex]\(1 \leq x \ \textless \ \infty\)[/tex]

Sagot :

To determine the domain of the function [tex]\( y = \sqrt{x} \)[/tex], we need to examine where the expression under the square root is defined in the real number system.

1. The function [tex]\( y = \sqrt{x} \)[/tex] involves taking the square root of [tex]\( x \)[/tex].
2. In the real number system, the square root is defined only for non-negative numbers because the square root of a negative number is not a real number.

Therefore, the restriction is that [tex]\( x \)[/tex] must be greater than or equal to 0. This can be expressed mathematically as:

[tex]\[ x \geq 0 \][/tex]

Putting this into interval notation, the domain of the function [tex]\( y = \sqrt{x} \)[/tex] is:

[tex]\[ 0 \leq x < \infty \][/tex]

So, the correct choice among the given options is:

[tex]\[ 0 \leq x < \infty \][/tex]

Hence, the correct answer is:
[tex]\[ \boxed{3} \][/tex]