Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given geometric series diverges, we need to check the common ratio ([tex]\(r\)[/tex]) of each series. A geometric series converges if the absolute value of the common ratio is less than 1 ([tex]\(|r| < 1\)[/tex]). Conversely, it diverges if the absolute value of the common ratio is greater than or equal to 1 ([tex]\(|r| \geq 1\)[/tex]).
Let's analyze each series one by one.
### Series 1:
[tex]\[ \frac{3}{5}+\frac{3}{10}+\frac{3}{20}+\frac{3}{40}+\ldots \][/tex]
To find the common ratio for the first series, we divide the second term by the first term:
[tex]\[ r = \frac{\frac{3}{10}}{\frac{3}{5}} = \frac{3}{10} \times \frac{5}{3} = \frac{5}{10} = 0.5 \][/tex]
The absolute value of the common ratio is:
[tex]\[ |r| = |0.5| = 0.5 \][/tex]
Since [tex]\(0.5 < 1\)[/tex], this series converges.
### Series 2:
[tex]\[ -10+4-\frac{8}{5}+\frac{16}{25}+\ldots \][/tex]
To find the common ratio for this series, we divide the second term by the first term:
[tex]\[ r = \frac{4}{-10} = -0.4 \][/tex]
The absolute value of the common ratio is:
[tex]\[ |r| = |-0.4| = 0.4 \][/tex]
Since [tex]\(0.4 < 1\)[/tex], this series converges.
### Series 3:
[tex]\[ \sum_{n=1}^{\infty} \frac{2}{3}(-4)^{n-1} \][/tex]
The series given in summation notation has a common ratio specified directly:
[tex]\[ r = -4 \][/tex]
The absolute value of the common ratio is:
[tex]\[ |r| = |-4| = 4 \][/tex]
Since [tex]\(4 \geq 1\)[/tex], this series diverges.
### Series 4:
[tex]\[ \sum_{n=1}^{\infty}(-12)\left(\frac{1}{5}\right)^{n-1} \][/tex]
The series given in summation notation has a common ratio specified directly:
[tex]\[ r = \frac{1}{5} \][/tex]
The absolute value of the common ratio is:
[tex]\[ |r| = \left|\frac{1}{5}\right| = 0.2 \][/tex]
Since [tex]\(0.2 < 1\)[/tex], this series converges.
### Conclusion:
The series that diverges is the one with the common ratio [tex]\(-4\)[/tex]:
[tex]\[ \sum_{n=1}^{\infty} \frac{2}{3}(-4)^{n-1} \][/tex]
Let's analyze each series one by one.
### Series 1:
[tex]\[ \frac{3}{5}+\frac{3}{10}+\frac{3}{20}+\frac{3}{40}+\ldots \][/tex]
To find the common ratio for the first series, we divide the second term by the first term:
[tex]\[ r = \frac{\frac{3}{10}}{\frac{3}{5}} = \frac{3}{10} \times \frac{5}{3} = \frac{5}{10} = 0.5 \][/tex]
The absolute value of the common ratio is:
[tex]\[ |r| = |0.5| = 0.5 \][/tex]
Since [tex]\(0.5 < 1\)[/tex], this series converges.
### Series 2:
[tex]\[ -10+4-\frac{8}{5}+\frac{16}{25}+\ldots \][/tex]
To find the common ratio for this series, we divide the second term by the first term:
[tex]\[ r = \frac{4}{-10} = -0.4 \][/tex]
The absolute value of the common ratio is:
[tex]\[ |r| = |-0.4| = 0.4 \][/tex]
Since [tex]\(0.4 < 1\)[/tex], this series converges.
### Series 3:
[tex]\[ \sum_{n=1}^{\infty} \frac{2}{3}(-4)^{n-1} \][/tex]
The series given in summation notation has a common ratio specified directly:
[tex]\[ r = -4 \][/tex]
The absolute value of the common ratio is:
[tex]\[ |r| = |-4| = 4 \][/tex]
Since [tex]\(4 \geq 1\)[/tex], this series diverges.
### Series 4:
[tex]\[ \sum_{n=1}^{\infty}(-12)\left(\frac{1}{5}\right)^{n-1} \][/tex]
The series given in summation notation has a common ratio specified directly:
[tex]\[ r = \frac{1}{5} \][/tex]
The absolute value of the common ratio is:
[tex]\[ |r| = \left|\frac{1}{5}\right| = 0.2 \][/tex]
Since [tex]\(0.2 < 1\)[/tex], this series converges.
### Conclusion:
The series that diverges is the one with the common ratio [tex]\(-4\)[/tex]:
[tex]\[ \sum_{n=1}^{\infty} \frac{2}{3}(-4)^{n-1} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.