Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which statement best describes the function [tex]\( f(x) = -2 \sqrt{x-7} + 1 \)[/tex] regarding the value -6, we need to thoroughly examine both the domain and the range of the function.
Step 1: Determine the domain of [tex]\( f(x) \)[/tex].
The domain of the function [tex]\( f(x) = -2 \sqrt{x-7} + 1 \)[/tex] is defined by the values of [tex]\( x \)[/tex] for which the expression under the square root is non-negative. This means:
[tex]\[ x - 7 \geq 0 \][/tex]
[tex]\[ x \geq 7 \][/tex]
Thus, the domain of [tex]\( f(x) \)[/tex] is [tex]\( x \geq 7 \)[/tex].
Step 2: Determine if -6 is in the domain.
Since the domain of [tex]\( f(x) \)[/tex] is [tex]\( x \geq 7 \)[/tex], the number -6 is not in the domain because [tex]\( -6 \)[/tex] does not satisfy [tex]\( x \geq 7 \)[/tex].
Step 3: Determine the range of [tex]\( f(x) \)[/tex].
To find the range, we need to consider the behavior of [tex]\( f(x) = -2 \sqrt{x-7} + 1 \)[/tex].
- As [tex]\( x \)[/tex] starts from 7 (the minimum value in the domain), [tex]\( \sqrt{x-7} \)[/tex] starts from 0:
[tex]\[ f(7) = -2 \sqrt{7-7} + 1 = -2(0) + 1 = 1 \][/tex]
- As [tex]\( x \)[/tex] increases, [tex]\( \sqrt{x-7} \)[/tex] becomes larger, making [tex]\( -2 \sqrt{x-7} \)[/tex] more negative. Thus, [tex]\( f(x) \)[/tex] decreases from 1.
Considering the function behaves monotonically decreasings from 1 as [tex]\( x \)[/tex] tends to infinity:
[tex]\[ \text{As} \ x \to \infty, \ \sqrt{x-7} \to \infty \ \Rightarrow \ -2 \sqrt{x-7} \to -\infty, \ \Rightarrow \ f(x) = -2 \sqrt{x-7} + 1 \to -\infty \][/tex]
Thus, the range of [tex]\( f(x) \)[/tex] is all values [tex]\( y \leq 1 \)[/tex], essentially [tex]\( (-\infty, 1] \)[/tex].
Step 4: Determine if -6 is in the range.
Since the range of [tex]\( f(x) \)[/tex] is [tex]\( (-\infty, 1] \)[/tex], -6 is indeed within this range because [tex]\(-6 \leq 1\)[/tex].
Conclusion:
Based on our analysis:
- -6 is not in the domain of [tex]\( f(x) \)[/tex].
- -6 is in the range of [tex]\( f(x) \)[/tex].
The best statement that describes [tex]\( f(x) = -2 \sqrt{x-7} + 1 \)[/tex] regarding -6 is:
- [tex]\(-6\)[/tex] is not in the domain of [tex]\( f(x) \)[/tex] but is in the range of [tex]\( f(x) \)[/tex].
Step 1: Determine the domain of [tex]\( f(x) \)[/tex].
The domain of the function [tex]\( f(x) = -2 \sqrt{x-7} + 1 \)[/tex] is defined by the values of [tex]\( x \)[/tex] for which the expression under the square root is non-negative. This means:
[tex]\[ x - 7 \geq 0 \][/tex]
[tex]\[ x \geq 7 \][/tex]
Thus, the domain of [tex]\( f(x) \)[/tex] is [tex]\( x \geq 7 \)[/tex].
Step 2: Determine if -6 is in the domain.
Since the domain of [tex]\( f(x) \)[/tex] is [tex]\( x \geq 7 \)[/tex], the number -6 is not in the domain because [tex]\( -6 \)[/tex] does not satisfy [tex]\( x \geq 7 \)[/tex].
Step 3: Determine the range of [tex]\( f(x) \)[/tex].
To find the range, we need to consider the behavior of [tex]\( f(x) = -2 \sqrt{x-7} + 1 \)[/tex].
- As [tex]\( x \)[/tex] starts from 7 (the minimum value in the domain), [tex]\( \sqrt{x-7} \)[/tex] starts from 0:
[tex]\[ f(7) = -2 \sqrt{7-7} + 1 = -2(0) + 1 = 1 \][/tex]
- As [tex]\( x \)[/tex] increases, [tex]\( \sqrt{x-7} \)[/tex] becomes larger, making [tex]\( -2 \sqrt{x-7} \)[/tex] more negative. Thus, [tex]\( f(x) \)[/tex] decreases from 1.
Considering the function behaves monotonically decreasings from 1 as [tex]\( x \)[/tex] tends to infinity:
[tex]\[ \text{As} \ x \to \infty, \ \sqrt{x-7} \to \infty \ \Rightarrow \ -2 \sqrt{x-7} \to -\infty, \ \Rightarrow \ f(x) = -2 \sqrt{x-7} + 1 \to -\infty \][/tex]
Thus, the range of [tex]\( f(x) \)[/tex] is all values [tex]\( y \leq 1 \)[/tex], essentially [tex]\( (-\infty, 1] \)[/tex].
Step 4: Determine if -6 is in the range.
Since the range of [tex]\( f(x) \)[/tex] is [tex]\( (-\infty, 1] \)[/tex], -6 is indeed within this range because [tex]\(-6 \leq 1\)[/tex].
Conclusion:
Based on our analysis:
- -6 is not in the domain of [tex]\( f(x) \)[/tex].
- -6 is in the range of [tex]\( f(x) \)[/tex].
The best statement that describes [tex]\( f(x) = -2 \sqrt{x-7} + 1 \)[/tex] regarding -6 is:
- [tex]\(-6\)[/tex] is not in the domain of [tex]\( f(x) \)[/tex] but is in the range of [tex]\( f(x) \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.