Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the product of the given expression [tex]\( 3(x+4)(x-5) \)[/tex] and select the correct answer, let's go through the problem step-by-step:
1. First, identify the expression to expand:
[tex]\[ 3(x + 4)(x - 5) \][/tex]
2. Step 1: Expand the binomials [tex]\((x+4)\)[/tex] and [tex]\((x-5)\)[/tex]:
We apply the distributive property (also known as the FOIL method for binomials).
[tex]\( (x + 4)(x - 5) \)[/tex]
[tex]\[ x^2 - 5x + 4x - 20 \][/tex]
Combine like terms:
[tex]\[ x^2 - x - 20 \][/tex]
3. Step 2: Multiply the expanded binomial by 3:
Distribute the 3 across the terms [tex]\(x^2 - x - 20\)[/tex]:
[tex]\[ 3 \cdot (x^2 - x - 20) \][/tex]
Distribute each term:
[tex]\[ 3x^2 - 3x - 60 \][/tex]
4. Final result:
The expanded expression is:
[tex]\[ 3x^2 - 3x - 60 \][/tex]
So, the correct answer from the choices provided is:
C. [tex]\( 3 x^2 - 3 x - 60 \)[/tex]
1. First, identify the expression to expand:
[tex]\[ 3(x + 4)(x - 5) \][/tex]
2. Step 1: Expand the binomials [tex]\((x+4)\)[/tex] and [tex]\((x-5)\)[/tex]:
We apply the distributive property (also known as the FOIL method for binomials).
[tex]\( (x + 4)(x - 5) \)[/tex]
[tex]\[ x^2 - 5x + 4x - 20 \][/tex]
Combine like terms:
[tex]\[ x^2 - x - 20 \][/tex]
3. Step 2: Multiply the expanded binomial by 3:
Distribute the 3 across the terms [tex]\(x^2 - x - 20\)[/tex]:
[tex]\[ 3 \cdot (x^2 - x - 20) \][/tex]
Distribute each term:
[tex]\[ 3x^2 - 3x - 60 \][/tex]
4. Final result:
The expanded expression is:
[tex]\[ 3x^2 - 3x - 60 \][/tex]
So, the correct answer from the choices provided is:
C. [tex]\( 3 x^2 - 3 x - 60 \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.