Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the value of [tex]\( k \)[/tex] such that the remainder is zero when dividing the polynomial [tex]\( x^3 - kx^2 + 2x - 4 \)[/tex] by [tex]\( x - 2 \)[/tex], we follow these steps:
1. Set up the division:
We are given the polynomial [tex]\( P(x) = x^3 - kx^2 + 2x - 4 \)[/tex].
We need to divide this by [tex]\( (x - 2) \)[/tex].
2. Perform polynomial division:
The goal is to express [tex]\( P(x) \)[/tex] in the form:
[tex]\[ P(x) = (x - 2)Q(x) + R \][/tex]
where [tex]\( Q(x) \)[/tex] is the quotient and [tex]\( R \)[/tex] is the remainder.
3. Use the division algorithm:
Track the steps in synthetic or polynomial division.
Step-by-step division:
a. Leading term:
[tex]\[ \frac{x^3}{x} = x^2 \][/tex]
Multiply [tex]\( x^2 \)[/tex] by [tex]\( (x - 2) \)[/tex]:
[tex]\[ x^3 - 2x^2 \][/tex]
Subtract from the original polynomial:
[tex]\[ (x^3 - kx^2 + 2x - 4) - (x^3 - 2x^2) = (-k + 2)x^2 + 2x - 4 \][/tex]
b. Next term:
[tex]\[ \frac{(-k + 2)x^2}{x} = (-k + 2)x \][/tex]
Multiply [tex]\((-k + 2)x\)[/tex] by [tex]\( (x - 2) \)[/tex]:
[tex]\[ (-k + 2)x^2 - 2(-k + 2)x = (-k + 2)x^2 + 2k - 4x \][/tex]
Subtract:
[tex]\[ ((-k + 2)x^2 + 2x - 4) - ((-k + 2)x^2 + 2k - 4x) = (2 - (-2k + 4))x - 4 = 2x - 4k + 4x - 4 = (2 + 4)x - 4k - 4 = (4)x - 4k - 4 \][/tex]
c. Last term:
[tex]\[ \frac{2x}{x} + 4 = 6 - k + 2 \frac{ The quotient is: \( Q(x) = x^2 + (-k + 2)x + 6 \) 4. Remainder: We found that the remainder when dividing \( x^3 - kx^2 + 2x - 4 \) by \( x - 2 \) can be expressed as: \[ R = 8 - 4k \][/tex]
We want this remainder to be zero:
[tex]\[ 8 - 4k = 0 \][/tex]
5. Solve for [tex]\( k \)[/tex]:
[tex]\[ 8 = 4k \quad \Rightarrow \quad k = \frac{8}{4} = 2 \][/tex]
So, the value of [tex]\( k \)[/tex] that ensures the remainder is zero is:
[tex]\[ k = 2 \][/tex]
1. Set up the division:
We are given the polynomial [tex]\( P(x) = x^3 - kx^2 + 2x - 4 \)[/tex].
We need to divide this by [tex]\( (x - 2) \)[/tex].
2. Perform polynomial division:
The goal is to express [tex]\( P(x) \)[/tex] in the form:
[tex]\[ P(x) = (x - 2)Q(x) + R \][/tex]
where [tex]\( Q(x) \)[/tex] is the quotient and [tex]\( R \)[/tex] is the remainder.
3. Use the division algorithm:
Track the steps in synthetic or polynomial division.
Step-by-step division:
a. Leading term:
[tex]\[ \frac{x^3}{x} = x^2 \][/tex]
Multiply [tex]\( x^2 \)[/tex] by [tex]\( (x - 2) \)[/tex]:
[tex]\[ x^3 - 2x^2 \][/tex]
Subtract from the original polynomial:
[tex]\[ (x^3 - kx^2 + 2x - 4) - (x^3 - 2x^2) = (-k + 2)x^2 + 2x - 4 \][/tex]
b. Next term:
[tex]\[ \frac{(-k + 2)x^2}{x} = (-k + 2)x \][/tex]
Multiply [tex]\((-k + 2)x\)[/tex] by [tex]\( (x - 2) \)[/tex]:
[tex]\[ (-k + 2)x^2 - 2(-k + 2)x = (-k + 2)x^2 + 2k - 4x \][/tex]
Subtract:
[tex]\[ ((-k + 2)x^2 + 2x - 4) - ((-k + 2)x^2 + 2k - 4x) = (2 - (-2k + 4))x - 4 = 2x - 4k + 4x - 4 = (2 + 4)x - 4k - 4 = (4)x - 4k - 4 \][/tex]
c. Last term:
[tex]\[ \frac{2x}{x} + 4 = 6 - k + 2 \frac{ The quotient is: \( Q(x) = x^2 + (-k + 2)x + 6 \) 4. Remainder: We found that the remainder when dividing \( x^3 - kx^2 + 2x - 4 \) by \( x - 2 \) can be expressed as: \[ R = 8 - 4k \][/tex]
We want this remainder to be zero:
[tex]\[ 8 - 4k = 0 \][/tex]
5. Solve for [tex]\( k \)[/tex]:
[tex]\[ 8 = 4k \quad \Rightarrow \quad k = \frac{8}{4} = 2 \][/tex]
So, the value of [tex]\( k \)[/tex] that ensures the remainder is zero is:
[tex]\[ k = 2 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.