Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Add. Express your answer as a fraction.

[tex]\[ 5 \frac{1}{4} + 15.5 \][/tex]

[tex]\[ \square \][/tex]

Sagot :

To solve the problem of adding the mixed fraction [tex]\(5 \frac{1}{4}\)[/tex] and the decimal [tex]\(15.5\)[/tex], follow these steps:

1. Convert the mixed fraction to an improper fraction:

A mixed fraction like [tex]\(5 \frac{1}{4}\)[/tex] can be converted to an improper fraction by multiplying the whole number by the denominator and then adding the numerator.

- Whole number part: [tex]\(5\)[/tex]
- Fractional part: [tex]\(\frac{1}{4}\)[/tex]

Conversion steps:
[tex]\(5 \frac{1}{4} = \frac{5 \times 4 + 1}{4} = \frac{20 + 1}{4} = \frac{21}{4}\)[/tex].

Thus, [tex]\(5 \frac{1}{4} = \frac{21}{4}\)[/tex].

2. Convert the decimal to a fraction:

The decimal [tex]\(15.5\)[/tex] can be written as a fraction by recognizing that [tex]\(0.5\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].

Conversion steps:
[tex]\(15.5 = 15 + 0.5 = 15 + \frac{1}{2} = \frac{2 \times 15 + 1}{2} = \frac{30 + 1}{2} = \frac{31}{2}\)[/tex].

Thus, [tex]\(15.5 = \frac{31}{2}\)[/tex].

3. Make sure the fractions have a common denominator:

The two fractions we have are [tex]\(\frac{21}{4}\)[/tex] and [tex]\(\frac{31}{2}\)[/tex]. The common denominator for these fractions is [tex]\(4\)[/tex].

Convert [tex]\(\frac{31}{2}\)[/tex] to a fraction with a denominator of [tex]\(4\)[/tex]:

[tex]\(\frac{31}{2} = \frac{31 \times 2}{2 \times 2} = \frac{62}{4}\)[/tex].

4. Add the fractions:

With both fractions having the same denominator, we can simply add the numerators:

[tex]\[\frac{21}{4} + \frac{62}{4} = \frac{21 + 62}{4} = \frac{83}{4}.\][/tex]

5. Express the answer:

The sum of [tex]\(5 \frac{1}{4}\)[/tex] and [tex]\(15.5\)[/tex] is [tex]\(\frac{83}{4}\)[/tex].

Thus, the result is:
[tex]\(\boxed{\frac{83}{4}}\)[/tex]