Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the period of the simple harmonic motion given by the equation [tex]\( d = 9 \cos \left(\frac{\pi}{2} t\right) \)[/tex], follow these steps:
1. Identify the standard form of the cosine function: The general form for a cosine function in simple harmonic motion is [tex]\( d = A \cos(Bt + C) \)[/tex], where [tex]\( A \)[/tex] is the amplitude, [tex]\( B \)[/tex] is the angular frequency, [tex]\( t \)[/tex] is time, and [tex]\( C \)[/tex] is the phase shift.
2. Determine the angular frequency [tex]\( B \)[/tex]: In the given equation [tex]\( d = 9 \cos \left(\frac{\pi}{2} t\right) \)[/tex], the term [tex]\(\frac{\pi}{2}\)[/tex] is the angular frequency [tex]\( B \)[/tex].
3. Use the formula for finding the period: The period [tex]\( T \)[/tex] of a cosine function [tex]\( \cos(Bt) \)[/tex] is given by the formula:
[tex]\[ T = \frac{2\pi}{B} \][/tex]
4. Substitute the angular frequency [tex]\( B \)[/tex] into the period formula: Since [tex]\( B = \frac{\pi}{2} \)[/tex], substitute this into the formula:
[tex]\[ T = \frac{2\pi}{\frac{\pi}{2}} \][/tex]
5. Simplify the expression: To simplify the period [tex]\( T \)[/tex]:
[tex]\[ T = \frac{2\pi}{\frac{\pi}{2}} = 2\pi \cdot \frac{2}{\pi} = 4 \][/tex]
Therefore, the period [tex]\( T \)[/tex] of the simple harmonic motion given by the equation [tex]\( d = 9 \cos \left(\frac{\pi}{2} t\right) \)[/tex] is [tex]\( 4 \)[/tex] units.
1. Identify the standard form of the cosine function: The general form for a cosine function in simple harmonic motion is [tex]\( d = A \cos(Bt + C) \)[/tex], where [tex]\( A \)[/tex] is the amplitude, [tex]\( B \)[/tex] is the angular frequency, [tex]\( t \)[/tex] is time, and [tex]\( C \)[/tex] is the phase shift.
2. Determine the angular frequency [tex]\( B \)[/tex]: In the given equation [tex]\( d = 9 \cos \left(\frac{\pi}{2} t\right) \)[/tex], the term [tex]\(\frac{\pi}{2}\)[/tex] is the angular frequency [tex]\( B \)[/tex].
3. Use the formula for finding the period: The period [tex]\( T \)[/tex] of a cosine function [tex]\( \cos(Bt) \)[/tex] is given by the formula:
[tex]\[ T = \frac{2\pi}{B} \][/tex]
4. Substitute the angular frequency [tex]\( B \)[/tex] into the period formula: Since [tex]\( B = \frac{\pi}{2} \)[/tex], substitute this into the formula:
[tex]\[ T = \frac{2\pi}{\frac{\pi}{2}} \][/tex]
5. Simplify the expression: To simplify the period [tex]\( T \)[/tex]:
[tex]\[ T = \frac{2\pi}{\frac{\pi}{2}} = 2\pi \cdot \frac{2}{\pi} = 4 \][/tex]
Therefore, the period [tex]\( T \)[/tex] of the simple harmonic motion given by the equation [tex]\( d = 9 \cos \left(\frac{\pi}{2} t\right) \)[/tex] is [tex]\( 4 \)[/tex] units.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.