Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the dimensions of the original photo, we need to understand that Sylvia used a dilation factor to enlarge the original dimensions to create the final poster dimensions of 24 inches by 32 inches. The dilation factor provided is 0.4, which means the final dimensions are scaled by this factor to obtain the original sizes.
Let's denote the original width and height as [tex]\(w_{\text{original}}\)[/tex] and [tex]\(h_{\text{original}}\)[/tex], respectively.
The relationship between the final and original dimensions with the dilation factor is given by:
[tex]\[ w_{\text{final}} = w_{\text{original}} \times \text{dilation factor} \][/tex]
[tex]\[ h_{\text{final}} = h_{\text{original}} \times \text{dilation factor} \][/tex]
Given:
[tex]\[ w_{\text{final}} = 24 \, \text{inches} \][/tex]
[tex]\[ h_{\text{final}} = 32 \, \text{inches} \][/tex]
[tex]\[ \text{dilation factor} = 0.4 \][/tex]
We can find the original dimensions by rearranging the above equations to solve for [tex]\(w_{\text{original}}\)[/tex] and [tex]\(h_{\text{original}}\)[/tex]:
[tex]\[ w_{\text{original}} = \frac{w_{\text{final}}}{\text{dilation factor}} = \frac{24}{0.4} \][/tex]
[tex]\[ h_{\text{original}} = \frac{h_{\text{final}}}{\text{dilation factor}} = \frac{32}{0.4} \][/tex]
Perform the division:
[tex]\[ w_{\text{original}} = 24 \times \frac{1}{0.4} = 24 \times 2.5 = 9.6 \, \text{inches} \][/tex]
[tex]\[ h_{\text{original}} = 32 \times \frac{1}{0.4} = 32 \times 2.5 = 12.8 \, \text{inches} \][/tex]
Therefore, the dimensions of the original photo are:
[tex]\[ w_{\text{original}} = 9.6 \, \text{inches} \][/tex]
[tex]\[ h_{\text{original}} = 12.8 \, \text{inches} \][/tex]
We can conclude that none of the given multiple-choice options correspond to the dimensions calculated. Hence, the original dimensions are [tex]\(9.6 \times 12.8\)[/tex] inches.
Let's denote the original width and height as [tex]\(w_{\text{original}}\)[/tex] and [tex]\(h_{\text{original}}\)[/tex], respectively.
The relationship between the final and original dimensions with the dilation factor is given by:
[tex]\[ w_{\text{final}} = w_{\text{original}} \times \text{dilation factor} \][/tex]
[tex]\[ h_{\text{final}} = h_{\text{original}} \times \text{dilation factor} \][/tex]
Given:
[tex]\[ w_{\text{final}} = 24 \, \text{inches} \][/tex]
[tex]\[ h_{\text{final}} = 32 \, \text{inches} \][/tex]
[tex]\[ \text{dilation factor} = 0.4 \][/tex]
We can find the original dimensions by rearranging the above equations to solve for [tex]\(w_{\text{original}}\)[/tex] and [tex]\(h_{\text{original}}\)[/tex]:
[tex]\[ w_{\text{original}} = \frac{w_{\text{final}}}{\text{dilation factor}} = \frac{24}{0.4} \][/tex]
[tex]\[ h_{\text{original}} = \frac{h_{\text{final}}}{\text{dilation factor}} = \frac{32}{0.4} \][/tex]
Perform the division:
[tex]\[ w_{\text{original}} = 24 \times \frac{1}{0.4} = 24 \times 2.5 = 9.6 \, \text{inches} \][/tex]
[tex]\[ h_{\text{original}} = 32 \times \frac{1}{0.4} = 32 \times 2.5 = 12.8 \, \text{inches} \][/tex]
Therefore, the dimensions of the original photo are:
[tex]\[ w_{\text{original}} = 9.6 \, \text{inches} \][/tex]
[tex]\[ h_{\text{original}} = 12.8 \, \text{inches} \][/tex]
We can conclude that none of the given multiple-choice options correspond to the dimensions calculated. Hence, the original dimensions are [tex]\(9.6 \times 12.8\)[/tex] inches.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.