Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the question, we'll analyze the gravitational force formula that Lexy used:
[tex]\[ F_g = G \frac{(m_1)(m_2)}{r^2} \][/tex]
where:
- [tex]\(F_g\)[/tex] is the force of gravity,
- [tex]\(G\)[/tex] is the gravitational constant,
- [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses involved,
- [tex]\(r\)[/tex] is the distance between the centers of the two masses.
In the given formula:
[tex]\[ F_g = G \frac{(3 \times 10^5 \, \text{kg})(6 \times 10^{24} \, \text{kg})}{[(6.4 \times 10^6 \, \text{m}) + (1.8 \times 10^5 \, \text{m})]^2} \][/tex]
- [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] is one of the masses ([tex]\(m_1\)[/tex]).
- [tex]\(6 \times 10^{24} \, \text{kg}\)[/tex] is the other mass ([tex]\(m_2\)[/tex]).
- The term [tex]\([(6.4 \times 10^6 \, \text{m}) + (1.8 \times 10^5 \, \text{m})]^2\)[/tex] represents the square of the distance between the centers of the two masses.
Given that [tex]\(6 \times 10^{24} \, \text{kg}\)[/tex] represents the mass of Earth (since the Earth's mass is approximately [tex]\(5.97 \times 10^{24}\, \text{kg}\)[/tex]), it's logical to deduce that [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] must be the mass of the other object involved, which in this context is the space shuttle.
Therefore, [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] represents the mass of the space shuttle.
Hence, the correct answer is:
the mass of the space shuttle
[tex]\[ F_g = G \frac{(m_1)(m_2)}{r^2} \][/tex]
where:
- [tex]\(F_g\)[/tex] is the force of gravity,
- [tex]\(G\)[/tex] is the gravitational constant,
- [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses involved,
- [tex]\(r\)[/tex] is the distance between the centers of the two masses.
In the given formula:
[tex]\[ F_g = G \frac{(3 \times 10^5 \, \text{kg})(6 \times 10^{24} \, \text{kg})}{[(6.4 \times 10^6 \, \text{m}) + (1.8 \times 10^5 \, \text{m})]^2} \][/tex]
- [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] is one of the masses ([tex]\(m_1\)[/tex]).
- [tex]\(6 \times 10^{24} \, \text{kg}\)[/tex] is the other mass ([tex]\(m_2\)[/tex]).
- The term [tex]\([(6.4 \times 10^6 \, \text{m}) + (1.8 \times 10^5 \, \text{m})]^2\)[/tex] represents the square of the distance between the centers of the two masses.
Given that [tex]\(6 \times 10^{24} \, \text{kg}\)[/tex] represents the mass of Earth (since the Earth's mass is approximately [tex]\(5.97 \times 10^{24}\, \text{kg}\)[/tex]), it's logical to deduce that [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] must be the mass of the other object involved, which in this context is the space shuttle.
Therefore, [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] represents the mass of the space shuttle.
Hence, the correct answer is:
the mass of the space shuttle
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.