Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the question, we'll analyze the gravitational force formula that Lexy used:
[tex]\[ F_g = G \frac{(m_1)(m_2)}{r^2} \][/tex]
where:
- [tex]\(F_g\)[/tex] is the force of gravity,
- [tex]\(G\)[/tex] is the gravitational constant,
- [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses involved,
- [tex]\(r\)[/tex] is the distance between the centers of the two masses.
In the given formula:
[tex]\[ F_g = G \frac{(3 \times 10^5 \, \text{kg})(6 \times 10^{24} \, \text{kg})}{[(6.4 \times 10^6 \, \text{m}) + (1.8 \times 10^5 \, \text{m})]^2} \][/tex]
- [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] is one of the masses ([tex]\(m_1\)[/tex]).
- [tex]\(6 \times 10^{24} \, \text{kg}\)[/tex] is the other mass ([tex]\(m_2\)[/tex]).
- The term [tex]\([(6.4 \times 10^6 \, \text{m}) + (1.8 \times 10^5 \, \text{m})]^2\)[/tex] represents the square of the distance between the centers of the two masses.
Given that [tex]\(6 \times 10^{24} \, \text{kg}\)[/tex] represents the mass of Earth (since the Earth's mass is approximately [tex]\(5.97 \times 10^{24}\, \text{kg}\)[/tex]), it's logical to deduce that [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] must be the mass of the other object involved, which in this context is the space shuttle.
Therefore, [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] represents the mass of the space shuttle.
Hence, the correct answer is:
the mass of the space shuttle
[tex]\[ F_g = G \frac{(m_1)(m_2)}{r^2} \][/tex]
where:
- [tex]\(F_g\)[/tex] is the force of gravity,
- [tex]\(G\)[/tex] is the gravitational constant,
- [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses involved,
- [tex]\(r\)[/tex] is the distance between the centers of the two masses.
In the given formula:
[tex]\[ F_g = G \frac{(3 \times 10^5 \, \text{kg})(6 \times 10^{24} \, \text{kg})}{[(6.4 \times 10^6 \, \text{m}) + (1.8 \times 10^5 \, \text{m})]^2} \][/tex]
- [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] is one of the masses ([tex]\(m_1\)[/tex]).
- [tex]\(6 \times 10^{24} \, \text{kg}\)[/tex] is the other mass ([tex]\(m_2\)[/tex]).
- The term [tex]\([(6.4 \times 10^6 \, \text{m}) + (1.8 \times 10^5 \, \text{m})]^2\)[/tex] represents the square of the distance between the centers of the two masses.
Given that [tex]\(6 \times 10^{24} \, \text{kg}\)[/tex] represents the mass of Earth (since the Earth's mass is approximately [tex]\(5.97 \times 10^{24}\, \text{kg}\)[/tex]), it's logical to deduce that [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] must be the mass of the other object involved, which in this context is the space shuttle.
Therefore, [tex]\(3 \times 10^5 \, \text{kg}\)[/tex] represents the mass of the space shuttle.
Hence, the correct answer is:
the mass of the space shuttle
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.