Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's break down the problem step by step.
1. Determine the number of fiction and nonfiction books:
- Let [tex]\( N \)[/tex] represent the number of nonfiction books.
- The number of fiction books will be [tex]\( N + 40 \)[/tex].
- The total number of books was given as 400:
[tex]\[ \text{Total books} = \text{Fiction books} + \text{Nonfiction books} \implies 400 = (N + 40) + N \][/tex]
- Solving for [tex]\( N \)[/tex]:
[tex]\[ 400 = 2N + 40 \implies 360 = 2N \implies N = 180 \][/tex]
- There are 180 nonfiction books and [tex]\( 180 + 40 = 220 \)[/tex] fiction books.
2. Probability that Audrey picks a nonfiction book first:
- The total number of books at the beginning is 400.
- The number of nonfiction books currently is 180.
- Therefore, the probability that Audrey picks a nonfiction book is:
[tex]\[ P(\text{Audrey picks nonfiction}) = \frac{\text{Number of Nonfiction Books}}{\text{Total Number of Books}} = \frac{180}{400} = 0.45 \][/tex]
3. Probability that Ryan picks a nonfiction book second:
- After Audrey has picked a book, there are 399 books left in total.
- If Audrey has picked a nonfiction book, there are now 179 nonfiction books remaining.
- Therefore, the probability that Ryan picks one of these remaining nonfiction books is:
[tex]\[ P(\text{Ryan picks nonfiction} \mid \text{Audrey picked nonfiction}) = \frac{\text{Remaining Nonfiction Books}}{\text{Remaining Total Books}} = \frac{179}{399} \approx 0.4486 \][/tex]
4. Combined probability that both Audrey and Ryan pick nonfiction books:
- The combined probability is the product of the individual probabilities:
[tex]\[ P(\text{Both pick nonfiction}) = P(\text{Audrey picks nonfiction}) \times P(\text{Ryan picks nonfiction} \mid \text{Audrey picked nonfiction}) = 0.45 \times 0.4486 \approx 0.2019 \][/tex]
Now, expressing this in terms of fractions and checking the given multiple-choice options, it becomes:
[tex]\[ P(\text{Both pick nonfiction}) = \frac{180}{400} \times \frac{179}{399} \][/tex]
This matches option B:
[tex]\[ \boxed{\frac{180 \times 179}{400 \times 399}} \][/tex]
1. Determine the number of fiction and nonfiction books:
- Let [tex]\( N \)[/tex] represent the number of nonfiction books.
- The number of fiction books will be [tex]\( N + 40 \)[/tex].
- The total number of books was given as 400:
[tex]\[ \text{Total books} = \text{Fiction books} + \text{Nonfiction books} \implies 400 = (N + 40) + N \][/tex]
- Solving for [tex]\( N \)[/tex]:
[tex]\[ 400 = 2N + 40 \implies 360 = 2N \implies N = 180 \][/tex]
- There are 180 nonfiction books and [tex]\( 180 + 40 = 220 \)[/tex] fiction books.
2. Probability that Audrey picks a nonfiction book first:
- The total number of books at the beginning is 400.
- The number of nonfiction books currently is 180.
- Therefore, the probability that Audrey picks a nonfiction book is:
[tex]\[ P(\text{Audrey picks nonfiction}) = \frac{\text{Number of Nonfiction Books}}{\text{Total Number of Books}} = \frac{180}{400} = 0.45 \][/tex]
3. Probability that Ryan picks a nonfiction book second:
- After Audrey has picked a book, there are 399 books left in total.
- If Audrey has picked a nonfiction book, there are now 179 nonfiction books remaining.
- Therefore, the probability that Ryan picks one of these remaining nonfiction books is:
[tex]\[ P(\text{Ryan picks nonfiction} \mid \text{Audrey picked nonfiction}) = \frac{\text{Remaining Nonfiction Books}}{\text{Remaining Total Books}} = \frac{179}{399} \approx 0.4486 \][/tex]
4. Combined probability that both Audrey and Ryan pick nonfiction books:
- The combined probability is the product of the individual probabilities:
[tex]\[ P(\text{Both pick nonfiction}) = P(\text{Audrey picks nonfiction}) \times P(\text{Ryan picks nonfiction} \mid \text{Audrey picked nonfiction}) = 0.45 \times 0.4486 \approx 0.2019 \][/tex]
Now, expressing this in terms of fractions and checking the given multiple-choice options, it becomes:
[tex]\[ P(\text{Both pick nonfiction}) = \frac{180}{400} \times \frac{179}{399} \][/tex]
This matches option B:
[tex]\[ \boxed{\frac{180 \times 179}{400 \times 399}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.