Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To convert [tex]\( y = 6x^2 + 36x + 48 \)[/tex] into vertex form, we need to complete the square. Here's a detailed step-by-step solution:
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ y = 6(x^2 + 6x) + 48 \][/tex]
2. Complete the square inside the parentheses:
- Take half of the coefficient of [tex]\( x \)[/tex] (which is 6), square it, and add and subtract it inside the parentheses.
[tex]\[ \left(\frac{6}{2}\right)^2 = 9 \][/tex]
- Add and subtract 9 inside the parentheses:
[tex]\[ y = 6(x^2 + 6x + 9 - 9) + 48 \][/tex]
- Rewrite the expression inside the parentheses by completing the square:
[tex]\[ y = 6((x + 3)^2 - 9) + 48 \][/tex]
3. Simplify the equation by distributing the 6 and combining like terms:
- Distribute the 6:
[tex]\[ y = 6(x + 3)^2 - 6 \times 9 + 48 \][/tex]
- Simplify the constant term:
[tex]\[ y = 6(x + 3)^2 - 54 + 48 \][/tex]
- Combine like terms:
[tex]\[ y = 6(x + 3)^2 - 6 \][/tex]
Therefore, the equation in vertex form is:
[tex]\[ y = 6(x + 3)^2 - 6 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{b} \][/tex]
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ y = 6(x^2 + 6x) + 48 \][/tex]
2. Complete the square inside the parentheses:
- Take half of the coefficient of [tex]\( x \)[/tex] (which is 6), square it, and add and subtract it inside the parentheses.
[tex]\[ \left(\frac{6}{2}\right)^2 = 9 \][/tex]
- Add and subtract 9 inside the parentheses:
[tex]\[ y = 6(x^2 + 6x + 9 - 9) + 48 \][/tex]
- Rewrite the expression inside the parentheses by completing the square:
[tex]\[ y = 6((x + 3)^2 - 9) + 48 \][/tex]
3. Simplify the equation by distributing the 6 and combining like terms:
- Distribute the 6:
[tex]\[ y = 6(x + 3)^2 - 6 \times 9 + 48 \][/tex]
- Simplify the constant term:
[tex]\[ y = 6(x + 3)^2 - 54 + 48 \][/tex]
- Combine like terms:
[tex]\[ y = 6(x + 3)^2 - 6 \][/tex]
Therefore, the equation in vertex form is:
[tex]\[ y = 6(x + 3)^2 - 6 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{b} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.