Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the possible range of values for the third side [tex]\( x \)[/tex] in a triangle with sides measuring 2 inches and 7 inches, we need to apply the triangle inequality theorem. The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
Given the sides are 2 inches and 7 inches, let [tex]\( x \)[/tex] be the length of the third side. We need to satisfy the following inequalities:
1. The sum of the first two sides must be greater than the third side:
[tex]\[ 2 + 7 > x \][/tex]
Simplifying this, we get:
[tex]\[ 9 > x \][/tex]
or
[tex]\[ x < 9 \][/tex]
2. The sum of the other two sides must be greater than the remaining side:
[tex]\[ 2 + x > 7 \][/tex]
Simplifying this, we get:
[tex]\[ x > 5 \][/tex]
3. Similarly, the sum of the remaining two sides must be greater than the third side:
[tex]\[ 7 + x > 2 \][/tex]
Simplifying this, we get:
[tex]\[ x > -5 \][/tex]
However, this inequality is always true since [tex]\( x \)[/tex] is positive, and the length of a side of a triangle cannot be negative.
Combining the first two simplified inequalities, we get the range for [tex]\( x \)[/tex] as:
[tex]\[ 5 < x < 9 \][/tex]
Therefore, the correct inequality that gives the possible range of values for the length of the third side [tex]\( x \)[/tex] is:
C. [tex]\( 5 < x < 9 \)[/tex]
Given the sides are 2 inches and 7 inches, let [tex]\( x \)[/tex] be the length of the third side. We need to satisfy the following inequalities:
1. The sum of the first two sides must be greater than the third side:
[tex]\[ 2 + 7 > x \][/tex]
Simplifying this, we get:
[tex]\[ 9 > x \][/tex]
or
[tex]\[ x < 9 \][/tex]
2. The sum of the other two sides must be greater than the remaining side:
[tex]\[ 2 + x > 7 \][/tex]
Simplifying this, we get:
[tex]\[ x > 5 \][/tex]
3. Similarly, the sum of the remaining two sides must be greater than the third side:
[tex]\[ 7 + x > 2 \][/tex]
Simplifying this, we get:
[tex]\[ x > -5 \][/tex]
However, this inequality is always true since [tex]\( x \)[/tex] is positive, and the length of a side of a triangle cannot be negative.
Combining the first two simplified inequalities, we get the range for [tex]\( x \)[/tex] as:
[tex]\[ 5 < x < 9 \][/tex]
Therefore, the correct inequality that gives the possible range of values for the length of the third side [tex]\( x \)[/tex] is:
C. [tex]\( 5 < x < 9 \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.