Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To verify the distance between the probe and the center of Venus, we follow these steps using the gravitational force formula:
The formula for the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the objects,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of Venus ([tex]\( 4.87 \times 10^{24} \, \text{kg} \)[/tex]),
- [tex]\( m_2 \)[/tex] is the mass of the probe (655 kg),
- [tex]\( r \)[/tex] is the distance between the two objects (which we need to verify as [tex]\( 1 \times 10^6 \, \text{m} \)[/tex]).
Given:
- [tex]\( F = 2.58 \times 10^3 \, \text{N} \)[/tex],
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 = 4.87 \times 10^{24} \, \text{kg} \)[/tex],
- [tex]\( m_2 = 655 \, \text{kg} \)[/tex].
Plugging these values into the gravitational force equation, we get:
[tex]\[ 2.58 \times 10^3 = 6.67 \times 10^{-11} \cdot \frac{4.87 \times 10^{24} \cdot 655}{r^2} \][/tex]
To solve for [tex]\( r \)[/tex], we rearrange the equation:
[tex]\[ r^2 = \frac{6.67 \times 10^{-11} \cdot 4.87 \times 10^{24} \cdot 655}{2.58 \times 10^3} \][/tex]
[tex]\[ r^2 = \frac{2.11919035 \times 10^{17}}{2.58 \times 10^3} \][/tex]
[tex]\[ r^2 = 8.21472829 \times 10^{13} \][/tex]
Taking the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{8.21472829 \times 10^{13}} \][/tex]
[tex]\[ r \approx 9.065 \times 10^6 \, \text{m} \][/tex]
Upon review, it seems the distance calculation from the initial Python code was incorrect. With further investigation, it reveals the probe should be approximately [tex]\( 9.065 \times 10^6 \, \text{m} \)[/tex] from the center of Venus, not [tex]\( 1 \times 10^6 \, \text{m} \)[/tex].
The formula for the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the objects,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of Venus ([tex]\( 4.87 \times 10^{24} \, \text{kg} \)[/tex]),
- [tex]\( m_2 \)[/tex] is the mass of the probe (655 kg),
- [tex]\( r \)[/tex] is the distance between the two objects (which we need to verify as [tex]\( 1 \times 10^6 \, \text{m} \)[/tex]).
Given:
- [tex]\( F = 2.58 \times 10^3 \, \text{N} \)[/tex],
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 = 4.87 \times 10^{24} \, \text{kg} \)[/tex],
- [tex]\( m_2 = 655 \, \text{kg} \)[/tex].
Plugging these values into the gravitational force equation, we get:
[tex]\[ 2.58 \times 10^3 = 6.67 \times 10^{-11} \cdot \frac{4.87 \times 10^{24} \cdot 655}{r^2} \][/tex]
To solve for [tex]\( r \)[/tex], we rearrange the equation:
[tex]\[ r^2 = \frac{6.67 \times 10^{-11} \cdot 4.87 \times 10^{24} \cdot 655}{2.58 \times 10^3} \][/tex]
[tex]\[ r^2 = \frac{2.11919035 \times 10^{17}}{2.58 \times 10^3} \][/tex]
[tex]\[ r^2 = 8.21472829 \times 10^{13} \][/tex]
Taking the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{8.21472829 \times 10^{13}} \][/tex]
[tex]\[ r \approx 9.065 \times 10^6 \, \text{m} \][/tex]
Upon review, it seems the distance calculation from the initial Python code was incorrect. With further investigation, it reveals the probe should be approximately [tex]\( 9.065 \times 10^6 \, \text{m} \)[/tex] from the center of Venus, not [tex]\( 1 \times 10^6 \, \text{m} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.