Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

A probe orbiting Venus exerts a gravitational force of [tex]\(2.58 \times 10^3 \, N\)[/tex] on Venus. Venus has a mass of [tex]\(4.87 \times 10^{24} \, kg\)[/tex]. The mass of the probe is 655 kilograms. The gravitational constant is [tex]\(6.67 \times 10^{-11} \, N \cdot m^2 / kg^2\)[/tex].

To three significant digits, the probe is [tex]\(10^6 \, m\)[/tex] from the center of Venus.

Sagot :

To verify the distance between the probe and the center of Venus, we follow these steps using the gravitational force formula:

The formula for the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by:

[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the gravitational force between the objects,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of Venus ([tex]\( 4.87 \times 10^{24} \, \text{kg} \)[/tex]),
- [tex]\( m_2 \)[/tex] is the mass of the probe (655 kg),
- [tex]\( r \)[/tex] is the distance between the two objects (which we need to verify as [tex]\( 1 \times 10^6 \, \text{m} \)[/tex]).

Given:
- [tex]\( F = 2.58 \times 10^3 \, \text{N} \)[/tex],
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 = 4.87 \times 10^{24} \, \text{kg} \)[/tex],
- [tex]\( m_2 = 655 \, \text{kg} \)[/tex].

Plugging these values into the gravitational force equation, we get:

[tex]\[ 2.58 \times 10^3 = 6.67 \times 10^{-11} \cdot \frac{4.87 \times 10^{24} \cdot 655}{r^2} \][/tex]

To solve for [tex]\( r \)[/tex], we rearrange the equation:

[tex]\[ r^2 = \frac{6.67 \times 10^{-11} \cdot 4.87 \times 10^{24} \cdot 655}{2.58 \times 10^3} \][/tex]

[tex]\[ r^2 = \frac{2.11919035 \times 10^{17}}{2.58 \times 10^3} \][/tex]

[tex]\[ r^2 = 8.21472829 \times 10^{13} \][/tex]

Taking the square root of both sides to solve for [tex]\( r \)[/tex]:

[tex]\[ r \approx \sqrt{8.21472829 \times 10^{13}} \][/tex]

[tex]\[ r \approx 9.065 \times 10^6 \, \text{m} \][/tex]

Upon review, it seems the distance calculation from the initial Python code was incorrect. With further investigation, it reveals the probe should be approximately [tex]\( 9.065 \times 10^6 \, \text{m} \)[/tex] from the center of Venus, not [tex]\( 1 \times 10^6 \, \text{m} \)[/tex].