Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the total mechanical energy of the paper airplane flying above the ground, we need to consider both its potential energy and kinetic energy.
1. Calculating Potential Energy (PE)
- The formula for potential energy is given by:
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (0.1 kg in this case),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately 9.8 m/s²),
- [tex]\( h \)[/tex] is the height above the ground (1.5 m).
Substituting the given values:
[tex]\[ PE = 0.1 \times 9.8 \times 1.5 = 1.47 \, \text{J} \][/tex]
2. Calculating Kinetic Energy (KE)
- The formula for kinetic energy is:
[tex]\[ KE = \frac{1}{2} \times m \times v^2 \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (0.1 kg),
- [tex]\( v \)[/tex] is its velocity (2 m/s).
Substituting the given values:
[tex]\[ KE = \frac{1}{2} \times 0.1 \times (2^2) = \frac{1}{2} \times 0.1 \times 4 = 0.2 \, \text{J} \][/tex]
3. Calculating Total Mechanical Energy (TME)
- The total mechanical energy is the sum of potential and kinetic energies:
[tex]\[ TME = PE + KE \][/tex]
Substituting the computed values of potential and kinetic energy:
[tex]\[ TME = 1.47 \, \text{J} + 0.2 \, \text{J} = 1.67 \, \text{J} \][/tex]
Thus, the total mechanical energy of the paper airplane is [tex]\( \boxed{1.67 \, \text{J}} \)[/tex]. So, the correct answer is:
[tex]\[ \boxed{B. \, 1.67 J} \][/tex]
1. Calculating Potential Energy (PE)
- The formula for potential energy is given by:
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (0.1 kg in this case),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately 9.8 m/s²),
- [tex]\( h \)[/tex] is the height above the ground (1.5 m).
Substituting the given values:
[tex]\[ PE = 0.1 \times 9.8 \times 1.5 = 1.47 \, \text{J} \][/tex]
2. Calculating Kinetic Energy (KE)
- The formula for kinetic energy is:
[tex]\[ KE = \frac{1}{2} \times m \times v^2 \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (0.1 kg),
- [tex]\( v \)[/tex] is its velocity (2 m/s).
Substituting the given values:
[tex]\[ KE = \frac{1}{2} \times 0.1 \times (2^2) = \frac{1}{2} \times 0.1 \times 4 = 0.2 \, \text{J} \][/tex]
3. Calculating Total Mechanical Energy (TME)
- The total mechanical energy is the sum of potential and kinetic energies:
[tex]\[ TME = PE + KE \][/tex]
Substituting the computed values of potential and kinetic energy:
[tex]\[ TME = 1.47 \, \text{J} + 0.2 \, \text{J} = 1.67 \, \text{J} \][/tex]
Thus, the total mechanical energy of the paper airplane is [tex]\( \boxed{1.67 \, \text{J}} \)[/tex]. So, the correct answer is:
[tex]\[ \boxed{B. \, 1.67 J} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.