Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine how much gravitational potential energy is added to the picture frame when it is lifted to a higher shelf, follow these steps:
1. Understand the problem:
- Mass of the picture frame ([tex]\(m\)[/tex]) = 2 kg
- Initial height ([tex]\(h_i\)[/tex]) = 0.5 meters
- Final height ([tex]\(h_f\)[/tex]) = 1.3 meters
- Acceleration due to gravity ([tex]\(g\)[/tex]) = 9.8 m/s[tex]\(^2\)[/tex]
- We need to find the change in gravitational potential energy.
2. Calculate the change in height ([tex]\(\Delta h\)[/tex]):
[tex]\[ \Delta h = h_f - h_i = 1.3 \, \text{m} - 0.5 \, \text{m} = 0.8 \, \text{m} \][/tex]
3. Determine the change in gravitational potential energy ([tex]\(\Delta U\)[/tex]) using the formula:
[tex]\[ \Delta U = m \cdot g \cdot \Delta h \][/tex]
Plug in the known values:
[tex]\[ \Delta U = 2 \, \text{kg} \cdot 9.8 \, \text{m/s}^2 \cdot 0.8 \, \text{m} \][/tex]
4. Multiply to find the change in potential energy:
[tex]\[ \Delta U = 2 \cdot 9.8 \cdot 0.8 = 15.68 \, \text{J} \][/tex]
So, the change in gravitational potential energy when the picture frame is lifted to a height of 1.3 meters is [tex]\(15.68\)[/tex] Joules.
Therefore, the correct answer is:
C. [tex]\(15.68 \, \text{J}\)[/tex]
1. Understand the problem:
- Mass of the picture frame ([tex]\(m\)[/tex]) = 2 kg
- Initial height ([tex]\(h_i\)[/tex]) = 0.5 meters
- Final height ([tex]\(h_f\)[/tex]) = 1.3 meters
- Acceleration due to gravity ([tex]\(g\)[/tex]) = 9.8 m/s[tex]\(^2\)[/tex]
- We need to find the change in gravitational potential energy.
2. Calculate the change in height ([tex]\(\Delta h\)[/tex]):
[tex]\[ \Delta h = h_f - h_i = 1.3 \, \text{m} - 0.5 \, \text{m} = 0.8 \, \text{m} \][/tex]
3. Determine the change in gravitational potential energy ([tex]\(\Delta U\)[/tex]) using the formula:
[tex]\[ \Delta U = m \cdot g \cdot \Delta h \][/tex]
Plug in the known values:
[tex]\[ \Delta U = 2 \, \text{kg} \cdot 9.8 \, \text{m/s}^2 \cdot 0.8 \, \text{m} \][/tex]
4. Multiply to find the change in potential energy:
[tex]\[ \Delta U = 2 \cdot 9.8 \cdot 0.8 = 15.68 \, \text{J} \][/tex]
So, the change in gravitational potential energy when the picture frame is lifted to a height of 1.3 meters is [tex]\(15.68\)[/tex] Joules.
Therefore, the correct answer is:
C. [tex]\(15.68 \, \text{J}\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.