Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Read each equation below and mark whether the equation is true or false.

1. [tex]\( 6 \div \frac{1}{3} \ \textgreater \ 16 \)[/tex]
- True ⬜
- False ⬜

2. [tex]\( \frac{1}{4} \div 3 = \frac{3}{12} \)[/tex]
- True ⬜
- False ⬜

3. [tex]\( 12 \div \frac{1}{6} \ \textless \ 80 \)[/tex]
- True ⬜
- False ⬜

4. [tex]\( \frac{1}{5} \div 2 \ \textgreater \ 9 \)[/tex]
- True ⬜
- False ⬜


Sagot :

Let's examine each equation one by one and determine whether it is true or false.

1. Equation 1: [tex]\( 6 \div \frac{1}{3} > 16 \)[/tex]

When we divide 6 by [tex]\(\frac{1}{3}\)[/tex], it is equivalent to multiplying 6 by 3:

[tex]\[ 6 \div \frac{1}{3} = 6 \times 3 = 18 \][/tex]

So, we have:

[tex]\[ 18 > 16 \][/tex]

This statement is true.

2. Equation 2: [tex]\( \frac{1}{4} \div 3 = \frac{3}{12} \)[/tex]

Dividing [tex]\(\frac{1}{4}\)[/tex] by 3 means multiplying [tex]\(\frac{1}{4}\)[/tex] by the reciprocal of 3, which is [tex]\(\frac{1}{3}\)[/tex]:

[tex]\[ \frac{1}{4} \div 3 = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12} \][/tex]

Now, let's examine the right-hand side:

[tex]\[ \frac{3}{12} = \frac{1}{4} \][/tex]

Since [tex]\(\frac{1}{12} \neq \frac{1}{4}\)[/tex], this statement is false.

3. Equation 3: [tex]\( 12 \div \frac{1}{6} < 80 \)[/tex]

Dividing 12 by [tex]\(\frac{1}{6}\)[/tex] is equivalent to multiplying 12 by 6:

[tex]\[ 12 \div \frac{1}{6} = 12 \times 6 = 72 \][/tex]

So, we have:

[tex]\[ 72 < 80 \][/tex]

This statement is true.

4. Equation 4: [tex]\( \frac{1}{5} \div 2 > 9 \)[/tex]

Dividing [tex]\(\frac{1}{5}\)[/tex] by 2 is equivalent to multiplying [tex]\(\frac{1}{5}\)[/tex] by the reciprocal of 2, which is [tex]\(\frac{1}{2}\)[/tex]:

[tex]\[ \frac{1}{5} \div 2 = \frac{1}{5} \times \frac{1}{2} = \frac{1}{10} \][/tex]

So, we have:

[tex]\[ \frac{1}{10} > 9 \][/tex]

Since [tex]\(\frac{1}{10}\)[/tex] is much less than 9, this statement is false.

Summarizing our findings:

[tex]\[ \begin{tabular}{|l|c|c|} \hline & . True & False \\ \hline $6 \div \frac{1}{3} > 16$ & \bigcirc & \\ \hline $\frac{1}{4} \div 3 = \frac{3}{12}$ & & \bigcirc \\ \hline $12 \div \frac{1}{6} < 80$ & \bigcirc & \\ \hline $\frac{1}{5} \div 2 > 9$ & & \bigcirc \\ \hline \end{tabular} \][/tex]