Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

The quadratic function [tex]\( f(x) \)[/tex] has roots of -2 and 3, and the point [tex]\( (2, -4) \)[/tex] lies on [tex]\( f(x) \)[/tex]. What is the equation of [tex]\( f(x) \)[/tex]?

A. [tex]\( f(x) = 2(x+2)(x-3) \)[/tex]
B. [tex]\( f(x) = 2(x-2)(x+3) \)[/tex]
C. [tex]\( f(x) = (x+2)(x-3) \)[/tex]
D. [tex]\( f(x) = (x-2)(x+3) \)[/tex]


Sagot :

To determine the equation of the quadratic function [tex]\( f(x) \)[/tex] with roots [tex]\(-2\)[/tex] and [tex]\(3\)[/tex] and which passes through the point [tex]\((2, -4)\)[/tex], follow these steps:

1. General Form: Given that the function has roots [tex]\(-2\)[/tex] and [tex]\(3\)[/tex], we can write it in its factorized form:
[tex]\[ f(x) = a(x + 2)(x - 3) \][/tex]
where [tex]\( a \)[/tex] is a constant that we need to determine.

2. Substitution of the Point:
We know that the point [tex]\((2, -4)\)[/tex] lies on [tex]\( f(x) \)[/tex]. This means when [tex]\( x = 2 \)[/tex], [tex]\( f(x) = -4 \)[/tex].
Substitute [tex]\( x = 2 \)[/tex] and [tex]\( f(x) = -4 \)[/tex] into the equation:
[tex]\[ -4 = a(2 + 2)(2 - 3) \][/tex]

3. Solve for [tex]\( a \)[/tex]:
Simplify the expression:
[tex]\[ -4 = a(4)(-1) \][/tex]
[tex]\[ -4 = -4a \][/tex]
Divide both sides by [tex]\(-4\)[/tex]:
[tex]\[ 1 = a \][/tex]

4. Formulate the Final Equation:
Now that we know [tex]\( a = 1 \)[/tex], we substitute [tex]\( a \)[/tex] back into the factorized form:
[tex]\[ f(x) = (x + 2)(x - 3) \][/tex]

5. Conclusion:
Comparing this result with the given options, we find that the correct function is:
[tex]\[ f(x) = (x + 2)(x - 3) \][/tex]
Therefore, the correct answer is:

[tex]\[ \boxed{(x+2)(x-3)} \][/tex]