Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's walk through the problem step by step.
### Part (a): Finding the Function
To determine the growth of an investment with compounding interest, we use the compound interest formula:
[tex]\[ A(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( n \)[/tex] is the number of times that interest is compounded per year.
- [tex]\( t \)[/tex] is the time the money is invested for in years.
Given:
- The principal amount [tex]\( P = 68,000 \)[/tex] dollars.
- The annual interest rate [tex]\( r = 3.5\% = 3.5 / 100 = 0.035 \)[/tex] (in decimal).
- The interest is compounded quarterly, which means [tex]\( n = 4 \)[/tex].
Plugging these values into the formula, we get:
[tex]\[ A(t) = 68000 \left(1 + \frac{0.035}{4}\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 \left(1 + 0.00875\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 (1.00875)^{4t} \][/tex]
### Part (b): Calculating the Amount after different years
Using the function [tex]\( A(t) = 68000 (1.00875)^{4t} \)[/tex], we will find the amount of money after [tex]\( t = 0, 4, 5, \)[/tex] and [tex]\( 10 \)[/tex] years.
1. When [tex]\( t = 0 \)[/tex] years:
[tex]\[ A(0) = 68000 (1.00875)^{4 \cdot 0} = 68000 (1.00875)^0 = 68000 \times 1 = 68000.0 \][/tex]
2. When [tex]\( t = 4 \)[/tex] years:
[tex]\[ A(4) = 68000 (1.00875)^{4 \times 4} = 68000 (1.00875)^{16} \approx 78171.00156549881 \][/tex]
3. When [tex]\( t = 5 \)[/tex] years:
[tex]\[ A(5) = 68000 (1.00875)^{4 \times 5} = 68000 (1.00875)^{20} \approx 80943.10635621526 \][/tex]
4. When [tex]\( t = 10 \)[/tex] years:
[tex]\[ A(10) = 68000 (1.00875)^{4 \times 10} = 68000 (1.00875)^{40} \approx 96349.80097931727 \][/tex]
So, the amounts are:
- After [tex]\( 0 \)[/tex] years: \[tex]$68,000.00 - After \( 4 \) years: \$[/tex]78,171.00
- After [tex]\( 5 \)[/tex] years: \[tex]$80,943.11 - After \( 10 \) years: \$[/tex]96,349.80
### Part (a): Finding the Function
To determine the growth of an investment with compounding interest, we use the compound interest formula:
[tex]\[ A(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( n \)[/tex] is the number of times that interest is compounded per year.
- [tex]\( t \)[/tex] is the time the money is invested for in years.
Given:
- The principal amount [tex]\( P = 68,000 \)[/tex] dollars.
- The annual interest rate [tex]\( r = 3.5\% = 3.5 / 100 = 0.035 \)[/tex] (in decimal).
- The interest is compounded quarterly, which means [tex]\( n = 4 \)[/tex].
Plugging these values into the formula, we get:
[tex]\[ A(t) = 68000 \left(1 + \frac{0.035}{4}\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 \left(1 + 0.00875\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 (1.00875)^{4t} \][/tex]
### Part (b): Calculating the Amount after different years
Using the function [tex]\( A(t) = 68000 (1.00875)^{4t} \)[/tex], we will find the amount of money after [tex]\( t = 0, 4, 5, \)[/tex] and [tex]\( 10 \)[/tex] years.
1. When [tex]\( t = 0 \)[/tex] years:
[tex]\[ A(0) = 68000 (1.00875)^{4 \cdot 0} = 68000 (1.00875)^0 = 68000 \times 1 = 68000.0 \][/tex]
2. When [tex]\( t = 4 \)[/tex] years:
[tex]\[ A(4) = 68000 (1.00875)^{4 \times 4} = 68000 (1.00875)^{16} \approx 78171.00156549881 \][/tex]
3. When [tex]\( t = 5 \)[/tex] years:
[tex]\[ A(5) = 68000 (1.00875)^{4 \times 5} = 68000 (1.00875)^{20} \approx 80943.10635621526 \][/tex]
4. When [tex]\( t = 10 \)[/tex] years:
[tex]\[ A(10) = 68000 (1.00875)^{4 \times 10} = 68000 (1.00875)^{40} \approx 96349.80097931727 \][/tex]
So, the amounts are:
- After [tex]\( 0 \)[/tex] years: \[tex]$68,000.00 - After \( 4 \) years: \$[/tex]78,171.00
- After [tex]\( 5 \)[/tex] years: \[tex]$80,943.11 - After \( 10 \) years: \$[/tex]96,349.80
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.