Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's walk through the problem step by step.
### Part (a): Finding the Function
To determine the growth of an investment with compounding interest, we use the compound interest formula:
[tex]\[ A(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( n \)[/tex] is the number of times that interest is compounded per year.
- [tex]\( t \)[/tex] is the time the money is invested for in years.
Given:
- The principal amount [tex]\( P = 68,000 \)[/tex] dollars.
- The annual interest rate [tex]\( r = 3.5\% = 3.5 / 100 = 0.035 \)[/tex] (in decimal).
- The interest is compounded quarterly, which means [tex]\( n = 4 \)[/tex].
Plugging these values into the formula, we get:
[tex]\[ A(t) = 68000 \left(1 + \frac{0.035}{4}\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 \left(1 + 0.00875\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 (1.00875)^{4t} \][/tex]
### Part (b): Calculating the Amount after different years
Using the function [tex]\( A(t) = 68000 (1.00875)^{4t} \)[/tex], we will find the amount of money after [tex]\( t = 0, 4, 5, \)[/tex] and [tex]\( 10 \)[/tex] years.
1. When [tex]\( t = 0 \)[/tex] years:
[tex]\[ A(0) = 68000 (1.00875)^{4 \cdot 0} = 68000 (1.00875)^0 = 68000 \times 1 = 68000.0 \][/tex]
2. When [tex]\( t = 4 \)[/tex] years:
[tex]\[ A(4) = 68000 (1.00875)^{4 \times 4} = 68000 (1.00875)^{16} \approx 78171.00156549881 \][/tex]
3. When [tex]\( t = 5 \)[/tex] years:
[tex]\[ A(5) = 68000 (1.00875)^{4 \times 5} = 68000 (1.00875)^{20} \approx 80943.10635621526 \][/tex]
4. When [tex]\( t = 10 \)[/tex] years:
[tex]\[ A(10) = 68000 (1.00875)^{4 \times 10} = 68000 (1.00875)^{40} \approx 96349.80097931727 \][/tex]
So, the amounts are:
- After [tex]\( 0 \)[/tex] years: \[tex]$68,000.00 - After \( 4 \) years: \$[/tex]78,171.00
- After [tex]\( 5 \)[/tex] years: \[tex]$80,943.11 - After \( 10 \) years: \$[/tex]96,349.80
### Part (a): Finding the Function
To determine the growth of an investment with compounding interest, we use the compound interest formula:
[tex]\[ A(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( n \)[/tex] is the number of times that interest is compounded per year.
- [tex]\( t \)[/tex] is the time the money is invested for in years.
Given:
- The principal amount [tex]\( P = 68,000 \)[/tex] dollars.
- The annual interest rate [tex]\( r = 3.5\% = 3.5 / 100 = 0.035 \)[/tex] (in decimal).
- The interest is compounded quarterly, which means [tex]\( n = 4 \)[/tex].
Plugging these values into the formula, we get:
[tex]\[ A(t) = 68000 \left(1 + \frac{0.035}{4}\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 \left(1 + 0.00875\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 (1.00875)^{4t} \][/tex]
### Part (b): Calculating the Amount after different years
Using the function [tex]\( A(t) = 68000 (1.00875)^{4t} \)[/tex], we will find the amount of money after [tex]\( t = 0, 4, 5, \)[/tex] and [tex]\( 10 \)[/tex] years.
1. When [tex]\( t = 0 \)[/tex] years:
[tex]\[ A(0) = 68000 (1.00875)^{4 \cdot 0} = 68000 (1.00875)^0 = 68000 \times 1 = 68000.0 \][/tex]
2. When [tex]\( t = 4 \)[/tex] years:
[tex]\[ A(4) = 68000 (1.00875)^{4 \times 4} = 68000 (1.00875)^{16} \approx 78171.00156549881 \][/tex]
3. When [tex]\( t = 5 \)[/tex] years:
[tex]\[ A(5) = 68000 (1.00875)^{4 \times 5} = 68000 (1.00875)^{20} \approx 80943.10635621526 \][/tex]
4. When [tex]\( t = 10 \)[/tex] years:
[tex]\[ A(10) = 68000 (1.00875)^{4 \times 10} = 68000 (1.00875)^{40} \approx 96349.80097931727 \][/tex]
So, the amounts are:
- After [tex]\( 0 \)[/tex] years: \[tex]$68,000.00 - After \( 4 \) years: \$[/tex]78,171.00
- After [tex]\( 5 \)[/tex] years: \[tex]$80,943.11 - After \( 10 \) years: \$[/tex]96,349.80
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.