Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's walk through the problem step by step.
### Part (a): Finding the Function
To determine the growth of an investment with compounding interest, we use the compound interest formula:
[tex]\[ A(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( n \)[/tex] is the number of times that interest is compounded per year.
- [tex]\( t \)[/tex] is the time the money is invested for in years.
Given:
- The principal amount [tex]\( P = 68,000 \)[/tex] dollars.
- The annual interest rate [tex]\( r = 3.5\% = 3.5 / 100 = 0.035 \)[/tex] (in decimal).
- The interest is compounded quarterly, which means [tex]\( n = 4 \)[/tex].
Plugging these values into the formula, we get:
[tex]\[ A(t) = 68000 \left(1 + \frac{0.035}{4}\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 \left(1 + 0.00875\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 (1.00875)^{4t} \][/tex]
### Part (b): Calculating the Amount after different years
Using the function [tex]\( A(t) = 68000 (1.00875)^{4t} \)[/tex], we will find the amount of money after [tex]\( t = 0, 4, 5, \)[/tex] and [tex]\( 10 \)[/tex] years.
1. When [tex]\( t = 0 \)[/tex] years:
[tex]\[ A(0) = 68000 (1.00875)^{4 \cdot 0} = 68000 (1.00875)^0 = 68000 \times 1 = 68000.0 \][/tex]
2. When [tex]\( t = 4 \)[/tex] years:
[tex]\[ A(4) = 68000 (1.00875)^{4 \times 4} = 68000 (1.00875)^{16} \approx 78171.00156549881 \][/tex]
3. When [tex]\( t = 5 \)[/tex] years:
[tex]\[ A(5) = 68000 (1.00875)^{4 \times 5} = 68000 (1.00875)^{20} \approx 80943.10635621526 \][/tex]
4. When [tex]\( t = 10 \)[/tex] years:
[tex]\[ A(10) = 68000 (1.00875)^{4 \times 10} = 68000 (1.00875)^{40} \approx 96349.80097931727 \][/tex]
So, the amounts are:
- After [tex]\( 0 \)[/tex] years: \[tex]$68,000.00 - After \( 4 \) years: \$[/tex]78,171.00
- After [tex]\( 5 \)[/tex] years: \[tex]$80,943.11 - After \( 10 \) years: \$[/tex]96,349.80
### Part (a): Finding the Function
To determine the growth of an investment with compounding interest, we use the compound interest formula:
[tex]\[ A(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( n \)[/tex] is the number of times that interest is compounded per year.
- [tex]\( t \)[/tex] is the time the money is invested for in years.
Given:
- The principal amount [tex]\( P = 68,000 \)[/tex] dollars.
- The annual interest rate [tex]\( r = 3.5\% = 3.5 / 100 = 0.035 \)[/tex] (in decimal).
- The interest is compounded quarterly, which means [tex]\( n = 4 \)[/tex].
Plugging these values into the formula, we get:
[tex]\[ A(t) = 68000 \left(1 + \frac{0.035}{4}\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 \left(1 + 0.00875\right)^{4t} \][/tex]
[tex]\[ A(t) = 68000 (1.00875)^{4t} \][/tex]
### Part (b): Calculating the Amount after different years
Using the function [tex]\( A(t) = 68000 (1.00875)^{4t} \)[/tex], we will find the amount of money after [tex]\( t = 0, 4, 5, \)[/tex] and [tex]\( 10 \)[/tex] years.
1. When [tex]\( t = 0 \)[/tex] years:
[tex]\[ A(0) = 68000 (1.00875)^{4 \cdot 0} = 68000 (1.00875)^0 = 68000 \times 1 = 68000.0 \][/tex]
2. When [tex]\( t = 4 \)[/tex] years:
[tex]\[ A(4) = 68000 (1.00875)^{4 \times 4} = 68000 (1.00875)^{16} \approx 78171.00156549881 \][/tex]
3. When [tex]\( t = 5 \)[/tex] years:
[tex]\[ A(5) = 68000 (1.00875)^{4 \times 5} = 68000 (1.00875)^{20} \approx 80943.10635621526 \][/tex]
4. When [tex]\( t = 10 \)[/tex] years:
[tex]\[ A(10) = 68000 (1.00875)^{4 \times 10} = 68000 (1.00875)^{40} \approx 96349.80097931727 \][/tex]
So, the amounts are:
- After [tex]\( 0 \)[/tex] years: \[tex]$68,000.00 - After \( 4 \) years: \$[/tex]78,171.00
- After [tex]\( 5 \)[/tex] years: \[tex]$80,943.11 - After \( 10 \) years: \$[/tex]96,349.80
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.