Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the simplest form of the given expression
[tex]\[ \frac{x^2 + x - 2}{x^3 - x^2 + 2x - 2}, \][/tex]
we need to simplify the fraction and check which of the provided options it matches. Here is the step-by-step procedure:
1. Factor the Numerator and Denominator:
We start by factoring both the numerator and the denominator if possible.
The numerator [tex]\(x^2 + x - 2\)[/tex] can be factored as:
[tex]\[ x^2 + x - 2 = (x + 2)(x - 1) \][/tex]
The denominator [tex]\(x^3 - x^2 + 2x - 2\)[/tex] can be factored by grouping:
[tex]\[ x^3 - x^2 + 2x - 2 = x^2(x - 1) + 2(x - 1) = (x^2 + 2)(x - 1) \][/tex]
2. Simplify the Expression:
Now we have:
[tex]\[ \frac{(x + 2)(x - 1)}{(x^2 + 2)(x - 1)} \][/tex]
We can cancel the common term [tex]\((x - 1)\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{x + 2}{x^2 + 2} \][/tex]
3. Compare with the Provided Options:
Let's see which option matches [tex]\(\frac{x+2}{x^2+2}\)[/tex]:
- [tex]\( \text{Option A:} \frac{1}{x-2} \)[/tex]
This is not equivalent to [tex]\(\frac{x + 2}{x^2 + 2}\)[/tex].
- [tex]\( \text{Option B:} \frac{1}{x+2} \)[/tex]
This is not equivalent to [tex]\(\frac{x + 2}{x^2 + 2}\)[/tex].
- [tex]\( \text{Option C:} \frac{x+2}{x^2+2} \)[/tex]
This is exactly equivalent to our simplified form [tex]\(\frac{x + 2}{x^2 + 2}\)[/tex].
- [tex]\( \text{Option D:} \frac{x-1}{x^2+2} \)[/tex]
This is not equivalent to [tex]\(\frac{x + 2}{x^2 + 2}\)[/tex].
Thus, the simplest form of the given expression is
[tex]\[ \boxed{ \frac{x+2}{x^2+2} }, \][/tex]
which corresponds to option C.
[tex]\[ \frac{x^2 + x - 2}{x^3 - x^2 + 2x - 2}, \][/tex]
we need to simplify the fraction and check which of the provided options it matches. Here is the step-by-step procedure:
1. Factor the Numerator and Denominator:
We start by factoring both the numerator and the denominator if possible.
The numerator [tex]\(x^2 + x - 2\)[/tex] can be factored as:
[tex]\[ x^2 + x - 2 = (x + 2)(x - 1) \][/tex]
The denominator [tex]\(x^3 - x^2 + 2x - 2\)[/tex] can be factored by grouping:
[tex]\[ x^3 - x^2 + 2x - 2 = x^2(x - 1) + 2(x - 1) = (x^2 + 2)(x - 1) \][/tex]
2. Simplify the Expression:
Now we have:
[tex]\[ \frac{(x + 2)(x - 1)}{(x^2 + 2)(x - 1)} \][/tex]
We can cancel the common term [tex]\((x - 1)\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{x + 2}{x^2 + 2} \][/tex]
3. Compare with the Provided Options:
Let's see which option matches [tex]\(\frac{x+2}{x^2+2}\)[/tex]:
- [tex]\( \text{Option A:} \frac{1}{x-2} \)[/tex]
This is not equivalent to [tex]\(\frac{x + 2}{x^2 + 2}\)[/tex].
- [tex]\( \text{Option B:} \frac{1}{x+2} \)[/tex]
This is not equivalent to [tex]\(\frac{x + 2}{x^2 + 2}\)[/tex].
- [tex]\( \text{Option C:} \frac{x+2}{x^2+2} \)[/tex]
This is exactly equivalent to our simplified form [tex]\(\frac{x + 2}{x^2 + 2}\)[/tex].
- [tex]\( \text{Option D:} \frac{x-1}{x^2+2} \)[/tex]
This is not equivalent to [tex]\(\frac{x + 2}{x^2 + 2}\)[/tex].
Thus, the simplest form of the given expression is
[tex]\[ \boxed{ \frac{x+2}{x^2+2} }, \][/tex]
which corresponds to option C.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.