Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which value of [tex]\( x \)[/tex] is in the domain of the function [tex]\( f(x) = \sqrt{x-2} \)[/tex], we need to ensure that the expression inside the square root is non-negative. Square roots are only defined for non-negative values. Thus, the expression [tex]\( x-2 \)[/tex] must be greater than or equal to zero.
Let's solve the inequality step-by-step:
1. Write the inequality:
[tex]\[ x - 2 \geq 0 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ x \geq 2 \][/tex]
This means that for [tex]\( f(x) \)[/tex] to be defined, [tex]\( x \)[/tex] must be at least 2 or greater.
Now, let's evaluate each of the provided choices:
- A. [tex]\( x = -2 \)[/tex]:
[tex]\[ -2 - 2 = -4 \quad (\text{which is less than } 0) \][/tex]
So, [tex]\( \sqrt{-4} \)[/tex] is not defined.
- B. [tex]\( x = 0 \)[/tex]:
[tex]\[ 0 - 2 = -2 \quad (\text{which is less than } 0) \][/tex]
So, [tex]\( \sqrt{-2} \)[/tex] is not defined.
- C. [tex]\( x = 1 \)[/tex]:
[tex]\[ 1 - 2 = -1 \quad (\text{which is less than } 0) \][/tex]
So, [tex]\( \sqrt{-1} \)[/tex] is not defined.
- D. [tex]\( x = 2 \)[/tex]:
[tex]\[ 2 - 2 = 0 \quad (\text{which is equal to } 0) \][/tex]
So, [tex]\( \sqrt{0} \)[/tex] is defined and equal to 0.
Given the inequality [tex]\( x \geq 2 \)[/tex], the only choice that satisfies this condition is [tex]\( x = 2 \)[/tex].
Therefore, the value of [tex]\( x \)[/tex] that is in the domain of [tex]\( f(x) = \sqrt{x-2} \)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
Let's solve the inequality step-by-step:
1. Write the inequality:
[tex]\[ x - 2 \geq 0 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ x \geq 2 \][/tex]
This means that for [tex]\( f(x) \)[/tex] to be defined, [tex]\( x \)[/tex] must be at least 2 or greater.
Now, let's evaluate each of the provided choices:
- A. [tex]\( x = -2 \)[/tex]:
[tex]\[ -2 - 2 = -4 \quad (\text{which is less than } 0) \][/tex]
So, [tex]\( \sqrt{-4} \)[/tex] is not defined.
- B. [tex]\( x = 0 \)[/tex]:
[tex]\[ 0 - 2 = -2 \quad (\text{which is less than } 0) \][/tex]
So, [tex]\( \sqrt{-2} \)[/tex] is not defined.
- C. [tex]\( x = 1 \)[/tex]:
[tex]\[ 1 - 2 = -1 \quad (\text{which is less than } 0) \][/tex]
So, [tex]\( \sqrt{-1} \)[/tex] is not defined.
- D. [tex]\( x = 2 \)[/tex]:
[tex]\[ 2 - 2 = 0 \quad (\text{which is equal to } 0) \][/tex]
So, [tex]\( \sqrt{0} \)[/tex] is defined and equal to 0.
Given the inequality [tex]\( x \geq 2 \)[/tex], the only choice that satisfies this condition is [tex]\( x = 2 \)[/tex].
Therefore, the value of [tex]\( x \)[/tex] that is in the domain of [tex]\( f(x) = \sqrt{x-2} \)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.