Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the problem, let's break down the given information and use the principles of physics, specifically the conservation of mechanical energy.
### Step 1: Determine the Initial Potential Energy
The pendulum starts at a height of 0.3 meters. The potential energy (PE) at this height is calculated using the formula:
[tex]\[ \text{PE} = m \cdot g \cdot h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass (0.5 kg)
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.8 m/s²)
- [tex]\( h \)[/tex] is the height (0.3 m)
Plugging in the values, we get:
[tex]\[ \text{PE} = 0.5 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 0.3 \, \text{m} \][/tex]
### Step 2: Calculate the Potential Energy
[tex]\[ \text{PE} = 0.5 \times 9.8 \times 0.3 = 1.47 \, \text{J} \][/tex]
### Step 3: Convert Potential Energy to Kinetic Energy
At the lowest point of its path, all the initial potential energy will have been converted into kinetic energy (KE). The kinetic energy is given by the formula:
[tex]\[ \text{KE} = \frac{1}{2} m v^2 \][/tex]
Since the kinetic energy at the lowest point is equal to the initial potential energy:
[tex]\[ 1.47 \, \text{J} = \frac{1}{2} \times 0.5 \, \text{kg} \times v^2 \][/tex]
### Step 4: Solve for Velocity
Rearranging the equation to solve for [tex]\( v \)[/tex]:
[tex]\[ 1.47 = 0.25 \times v^2 \][/tex]
[tex]\[ v^2 = \frac{1.47}{0.25} \][/tex]
[tex]\[ v^2 = 5.88 \][/tex]
[tex]\[ v = \sqrt{5.88} \][/tex]
[tex]\[ v \approx 2.42 \, \text{m/s} \][/tex]
### Conclusion
Thus, the velocity of the pendulum when it reaches the lowest point of its path is approximately 2.42 m/s. Among the options provided, the closest answer is:
A. [tex]\( 2.4 \, \text{m/s} \)[/tex]
So, the correct answer is:
A. [tex]\( 2.4 \, \text{m/s} \)[/tex]
### Step 1: Determine the Initial Potential Energy
The pendulum starts at a height of 0.3 meters. The potential energy (PE) at this height is calculated using the formula:
[tex]\[ \text{PE} = m \cdot g \cdot h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass (0.5 kg)
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.8 m/s²)
- [tex]\( h \)[/tex] is the height (0.3 m)
Plugging in the values, we get:
[tex]\[ \text{PE} = 0.5 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 0.3 \, \text{m} \][/tex]
### Step 2: Calculate the Potential Energy
[tex]\[ \text{PE} = 0.5 \times 9.8 \times 0.3 = 1.47 \, \text{J} \][/tex]
### Step 3: Convert Potential Energy to Kinetic Energy
At the lowest point of its path, all the initial potential energy will have been converted into kinetic energy (KE). The kinetic energy is given by the formula:
[tex]\[ \text{KE} = \frac{1}{2} m v^2 \][/tex]
Since the kinetic energy at the lowest point is equal to the initial potential energy:
[tex]\[ 1.47 \, \text{J} = \frac{1}{2} \times 0.5 \, \text{kg} \times v^2 \][/tex]
### Step 4: Solve for Velocity
Rearranging the equation to solve for [tex]\( v \)[/tex]:
[tex]\[ 1.47 = 0.25 \times v^2 \][/tex]
[tex]\[ v^2 = \frac{1.47}{0.25} \][/tex]
[tex]\[ v^2 = 5.88 \][/tex]
[tex]\[ v = \sqrt{5.88} \][/tex]
[tex]\[ v \approx 2.42 \, \text{m/s} \][/tex]
### Conclusion
Thus, the velocity of the pendulum when it reaches the lowest point of its path is approximately 2.42 m/s. Among the options provided, the closest answer is:
A. [tex]\( 2.4 \, \text{m/s} \)[/tex]
So, the correct answer is:
A. [tex]\( 2.4 \, \text{m/s} \)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.