Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the correct function that represents the frog population after [tex]\( x \)[/tex] years when the population is decreasing at an average rate of [tex]\( 3\% \)[/tex] per year, we need to follow these steps:
1. Understand the Decrease in Population:
- The population is decreasing at a rate of [tex]\( 3\% \)[/tex] per year. This means that each year, the population retains [tex]\( 100\% - 3\% = 97\% \)[/tex] of its previous year's population.
2. Initial Population:
- When Ginny began her study, the frog population was estimated at 1,200.
3. Formulate the Recursive Model:
- Let the initial population be [tex]\( P_0 = 1200 \)[/tex].
- The population after one year would be [tex]\( P_1 = 1200 \times 0.97 \)[/tex].
- The population after two years would be [tex]\( P_2 = 1200 \times 0.97 \times 0.97 \)[/tex].
4. Generalize to [tex]\( x \)[/tex] Years:
- We can generalize this to say that the population after [tex]\( x \)[/tex] years, [tex]\( P(x) \)[/tex], is given by multiplying the initial population by [tex]\( 0.97 \)[/tex] raised to the power of [tex]\( x \)[/tex]:
[tex]\[ P(x) = 1200 \times (0.97)^x \][/tex]
Therefore, among the given choices, the function that correctly represents the frog population after [tex]\( x \)[/tex] years is:
[tex]\[ f(x) = 1,200 (0.97)^x \][/tex]
So the correct function choice is:
[tex]\[ \boxed{f(x) = 1,200 (0.97)^x} \][/tex]
This corresponds to the third option given in the question.
1. Understand the Decrease in Population:
- The population is decreasing at a rate of [tex]\( 3\% \)[/tex] per year. This means that each year, the population retains [tex]\( 100\% - 3\% = 97\% \)[/tex] of its previous year's population.
2. Initial Population:
- When Ginny began her study, the frog population was estimated at 1,200.
3. Formulate the Recursive Model:
- Let the initial population be [tex]\( P_0 = 1200 \)[/tex].
- The population after one year would be [tex]\( P_1 = 1200 \times 0.97 \)[/tex].
- The population after two years would be [tex]\( P_2 = 1200 \times 0.97 \times 0.97 \)[/tex].
4. Generalize to [tex]\( x \)[/tex] Years:
- We can generalize this to say that the population after [tex]\( x \)[/tex] years, [tex]\( P(x) \)[/tex], is given by multiplying the initial population by [tex]\( 0.97 \)[/tex] raised to the power of [tex]\( x \)[/tex]:
[tex]\[ P(x) = 1200 \times (0.97)^x \][/tex]
Therefore, among the given choices, the function that correctly represents the frog population after [tex]\( x \)[/tex] years is:
[tex]\[ f(x) = 1,200 (0.97)^x \][/tex]
So the correct function choice is:
[tex]\[ \boxed{f(x) = 1,200 (0.97)^x} \][/tex]
This corresponds to the third option given in the question.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.