At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the correct function that represents the frog population after [tex]\( x \)[/tex] years when the population is decreasing at an average rate of [tex]\( 3\% \)[/tex] per year, we need to follow these steps:
1. Understand the Decrease in Population:
- The population is decreasing at a rate of [tex]\( 3\% \)[/tex] per year. This means that each year, the population retains [tex]\( 100\% - 3\% = 97\% \)[/tex] of its previous year's population.
2. Initial Population:
- When Ginny began her study, the frog population was estimated at 1,200.
3. Formulate the Recursive Model:
- Let the initial population be [tex]\( P_0 = 1200 \)[/tex].
- The population after one year would be [tex]\( P_1 = 1200 \times 0.97 \)[/tex].
- The population after two years would be [tex]\( P_2 = 1200 \times 0.97 \times 0.97 \)[/tex].
4. Generalize to [tex]\( x \)[/tex] Years:
- We can generalize this to say that the population after [tex]\( x \)[/tex] years, [tex]\( P(x) \)[/tex], is given by multiplying the initial population by [tex]\( 0.97 \)[/tex] raised to the power of [tex]\( x \)[/tex]:
[tex]\[ P(x) = 1200 \times (0.97)^x \][/tex]
Therefore, among the given choices, the function that correctly represents the frog population after [tex]\( x \)[/tex] years is:
[tex]\[ f(x) = 1,200 (0.97)^x \][/tex]
So the correct function choice is:
[tex]\[ \boxed{f(x) = 1,200 (0.97)^x} \][/tex]
This corresponds to the third option given in the question.
1. Understand the Decrease in Population:
- The population is decreasing at a rate of [tex]\( 3\% \)[/tex] per year. This means that each year, the population retains [tex]\( 100\% - 3\% = 97\% \)[/tex] of its previous year's population.
2. Initial Population:
- When Ginny began her study, the frog population was estimated at 1,200.
3. Formulate the Recursive Model:
- Let the initial population be [tex]\( P_0 = 1200 \)[/tex].
- The population after one year would be [tex]\( P_1 = 1200 \times 0.97 \)[/tex].
- The population after two years would be [tex]\( P_2 = 1200 \times 0.97 \times 0.97 \)[/tex].
4. Generalize to [tex]\( x \)[/tex] Years:
- We can generalize this to say that the population after [tex]\( x \)[/tex] years, [tex]\( P(x) \)[/tex], is given by multiplying the initial population by [tex]\( 0.97 \)[/tex] raised to the power of [tex]\( x \)[/tex]:
[tex]\[ P(x) = 1200 \times (0.97)^x \][/tex]
Therefore, among the given choices, the function that correctly represents the frog population after [tex]\( x \)[/tex] years is:
[tex]\[ f(x) = 1,200 (0.97)^x \][/tex]
So the correct function choice is:
[tex]\[ \boxed{f(x) = 1,200 (0.97)^x} \][/tex]
This corresponds to the third option given in the question.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.