Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we'll use the formula for the magnetic force on a moving charge. The formula is:
[tex]\[ F = qvB \sin(\theta) \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force on the charge,
- [tex]\( q \)[/tex] is the charge, given as [tex]\( 8.4 \times 10^{-4} \, \text{C} \)[/tex],
- [tex]\( v \)[/tex] is the velocity of the charge (which we'll assume to be 1 m/s for this problem as it's not provided),
- [tex]\( B \)[/tex] is the magnetic field strength, given as [tex]\( 6.7 \times 10^{-3} \, \text{T} \)[/tex],
- [tex]\( \theta \)[/tex] is the angle between the velocity of the charge and the magnetic field, given as [tex]\( 35^\circ \)[/tex].
Let's go through the solution step-by-step:
1. Convert the Angle to Radians:
The angle is given in degrees, but for trigonometric functions, we need to convert it to radians. The conversion factor is [tex]\( \pi \)[/tex] radians = [tex]\( 180^\circ \)[/tex].
Therefore, the angle in radians is:
[tex]\[ \theta_{\text{rad}} = 35^\circ \times \left(\frac{\pi}{180}\right) \][/tex]
This simplifies to:
[tex]\[ \theta_{\text{rad}} \approx 0.6108652381980153 \, \text{radians} \][/tex]
2. Calculate the Sine of the Angle:
Next, we need to calculate [tex]\( \sin(\theta_{\text{rad}}) \)[/tex]. For [tex]\( \theta_{\text{rad}} \approx 0.6108652381980153 \)[/tex]:
[tex]\[ \sin(0.6108652381980153) \approx 0.5736 \][/tex]
3. Calculate the Magnetic Force:
Using the formula [tex]\( F = qvB \sin(\theta) \)[/tex]:
[tex]\[ F = (8.4 \times 10^{-4} \, \text{C}) \times (1 \, \text{m/s}) \times (6.7 \times 10^{-3} \, \text{T}) \times \sin(0.6108652381980153) \][/tex]
[tex]\[ F \approx 8.4 \times 10^{-4} \times 6.7 \times 10^{-3} \times 0.5736 \][/tex]
Simplifying this:
[tex]\[ F \approx 3.2280881837836872 \times 10^{-6} \, \text{N} \][/tex]
Therefore, the angle in radians is approximately [tex]\( 0.6108652381980153 \)[/tex] radians, and the magnetic force on the charge is approximately [tex]\( 3.2280881837836872 \times 10^{-6} \)[/tex] Newtons.
[tex]\[ F = qvB \sin(\theta) \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force on the charge,
- [tex]\( q \)[/tex] is the charge, given as [tex]\( 8.4 \times 10^{-4} \, \text{C} \)[/tex],
- [tex]\( v \)[/tex] is the velocity of the charge (which we'll assume to be 1 m/s for this problem as it's not provided),
- [tex]\( B \)[/tex] is the magnetic field strength, given as [tex]\( 6.7 \times 10^{-3} \, \text{T} \)[/tex],
- [tex]\( \theta \)[/tex] is the angle between the velocity of the charge and the magnetic field, given as [tex]\( 35^\circ \)[/tex].
Let's go through the solution step-by-step:
1. Convert the Angle to Radians:
The angle is given in degrees, but for trigonometric functions, we need to convert it to radians. The conversion factor is [tex]\( \pi \)[/tex] radians = [tex]\( 180^\circ \)[/tex].
Therefore, the angle in radians is:
[tex]\[ \theta_{\text{rad}} = 35^\circ \times \left(\frac{\pi}{180}\right) \][/tex]
This simplifies to:
[tex]\[ \theta_{\text{rad}} \approx 0.6108652381980153 \, \text{radians} \][/tex]
2. Calculate the Sine of the Angle:
Next, we need to calculate [tex]\( \sin(\theta_{\text{rad}}) \)[/tex]. For [tex]\( \theta_{\text{rad}} \approx 0.6108652381980153 \)[/tex]:
[tex]\[ \sin(0.6108652381980153) \approx 0.5736 \][/tex]
3. Calculate the Magnetic Force:
Using the formula [tex]\( F = qvB \sin(\theta) \)[/tex]:
[tex]\[ F = (8.4 \times 10^{-4} \, \text{C}) \times (1 \, \text{m/s}) \times (6.7 \times 10^{-3} \, \text{T}) \times \sin(0.6108652381980153) \][/tex]
[tex]\[ F \approx 8.4 \times 10^{-4} \times 6.7 \times 10^{-3} \times 0.5736 \][/tex]
Simplifying this:
[tex]\[ F \approx 3.2280881837836872 \times 10^{-6} \, \text{N} \][/tex]
Therefore, the angle in radians is approximately [tex]\( 0.6108652381980153 \)[/tex] radians, and the magnetic force on the charge is approximately [tex]\( 3.2280881837836872 \times 10^{-6} \)[/tex] Newtons.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.