Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly, let's determine how much Khadija has in her account after 6 years given an initial investment of R25,000 with an annual interest rate of 10.3%, compounded quarterly.
### Given:
- Principal (P): R25,000
- Annual interest rate (r): 10.3% or 0.103
- Compounding frequency (n): Quarterly, which means the interest is compounded 4 times a year.
- Time (t): 6 years
### Step-by-step solution:
1. Understanding Compound Interest Formula:
The formula for compound interest is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Where:
- [tex]\( A \)[/tex] is the amount of money accumulated after the specified time, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( n \)[/tex] is the number of times the interest is compounded per year.
- [tex]\( t \)[/tex] is the time the money is invested for, in years.
2. Substitute the given values into the formula:
- Principal (P): R25,000
- Annual interest rate (r): 0.103 (10.3% as a decimal)
- Compounding frequency (n): 4 (compounded quarterly)
- Time (t): 6 years
So, we substitute these values into the formula:
[tex]\[ A = 25000 \left(1 + \frac{0.103}{4}\right)^{4 \times 6} \][/tex]
3. Calculate each part of the formula:
- Rate per period: [tex]\(\frac{0.103}{4}\)[/tex]
- This simplifies to [tex]\(\frac{0.103}{4} = 0.02575\)[/tex]
- Number of compounding periods: [tex]\(4 \times 6\)[/tex]
- This simplifies to [tex]\(4 \times 6 = 24\)[/tex]
- Base of the exponential part: [tex]\(1 + 0.02575\)[/tex]
- This simplifies to [tex]\(1 + 0.02575 = 1.02575\)[/tex]
- Exponent: [tex]\(24\)[/tex]
4. Applying the exponent:
[tex]\[ A = 25000 \left(1.02575\right)^{24} \][/tex]
5. Calculating the final amount:
- By evaluating this expression, we find:
[tex]\[ A \approx 46018.94 \][/tex]
Therefore, after 6 years, Khadija has approximately R46,018.94 in her account.
### Given:
- Principal (P): R25,000
- Annual interest rate (r): 10.3% or 0.103
- Compounding frequency (n): Quarterly, which means the interest is compounded 4 times a year.
- Time (t): 6 years
### Step-by-step solution:
1. Understanding Compound Interest Formula:
The formula for compound interest is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Where:
- [tex]\( A \)[/tex] is the amount of money accumulated after the specified time, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( n \)[/tex] is the number of times the interest is compounded per year.
- [tex]\( t \)[/tex] is the time the money is invested for, in years.
2. Substitute the given values into the formula:
- Principal (P): R25,000
- Annual interest rate (r): 0.103 (10.3% as a decimal)
- Compounding frequency (n): 4 (compounded quarterly)
- Time (t): 6 years
So, we substitute these values into the formula:
[tex]\[ A = 25000 \left(1 + \frac{0.103}{4}\right)^{4 \times 6} \][/tex]
3. Calculate each part of the formula:
- Rate per period: [tex]\(\frac{0.103}{4}\)[/tex]
- This simplifies to [tex]\(\frac{0.103}{4} = 0.02575\)[/tex]
- Number of compounding periods: [tex]\(4 \times 6\)[/tex]
- This simplifies to [tex]\(4 \times 6 = 24\)[/tex]
- Base of the exponential part: [tex]\(1 + 0.02575\)[/tex]
- This simplifies to [tex]\(1 + 0.02575 = 1.02575\)[/tex]
- Exponent: [tex]\(24\)[/tex]
4. Applying the exponent:
[tex]\[ A = 25000 \left(1.02575\right)^{24} \][/tex]
5. Calculating the final amount:
- By evaluating this expression, we find:
[tex]\[ A \approx 46018.94 \][/tex]
Therefore, after 6 years, Khadija has approximately R46,018.94 in her account.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.