Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the [tex]\( n \)[/tex]th term of the given quadratic sequence [tex]\( 3, 8, 15, 24, 35, \ldots \)[/tex], we'll follow a systematic approach. A quadratic sequence generally has the form:
[tex]\[ a n^2 + b n + c \][/tex]
We need to determine the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]. Here are the steps:
1. Identify the first differences:
- Calculate the differences between consecutive terms of the sequence.
[tex]\[ 8 - 3 = 5 \][/tex]
[tex]\[ 15 - 8 = 7 \][/tex]
[tex]\[ 24 - 15 = 9 \][/tex]
[tex]\[ 35 - 24 = 11 \][/tex]
Thus, the first differences are:
[tex]\[ 5, 7, 9, 11 \][/tex]
2. Identify the second differences:
- Calculate the differences between consecutive terms of the first differences.
[tex]\[ 7 - 5 = 2 \][/tex]
[tex]\[ 9 - 7 = 2 \][/tex]
[tex]\[ 11 - 9 = 2 \][/tex]
Since the second differences are constant (equal to 2), we confirm that the sequence is quadratic.
3. Form the system of equations:
- Use the first three terms of the sequence to set up equations and solve for [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex].
Let’s use the terms for [tex]\( n = 1, 2, 3 \)[/tex]:
[tex]\[ T_1 = a(1)^2 + b(1) + c = 3 \quad \text{(Equation 1)} \][/tex]
[tex]\[ T_2 = a(2)^2 + b(2) + c = 8 \quad \text{(Equation 2)} \][/tex]
[tex]\[ T_3 = a(3)^2 + b(3) + c = 15 \quad \text{(Equation 3)} \][/tex]
These equations are:
[tex]\[ a + b + c = 3 \quad \text{(Equation 1)} \][/tex]
[tex]\[ 4a + 2b + c = 8 \quad \text{(Equation 2)} \][/tex]
[tex]\[ 9a + 3b + c = 15 \quad \text{(Equation 3)} \][/tex]
4. Solve the system of equations:
Subtract Equation 1 from Equation 2:
[tex]\[ (4a + 2b + c) - (a + b + c) = 8 - 3 \][/tex]
[tex]\[ 3a + b = 5 \quad \text{(Equation 4)} \][/tex]
Subtract Equation 2 from Equation 3:
[tex]\[ (9a + 3b + c) - (4a + 2b + c) = 15 - 8 \][/tex]
[tex]\[ 5a + b = 7 \quad \text{(Equation 5)} \][/tex]
Subtract Equation 4 from Equation 5:
[tex]\[ (5a + b) - (3a + b) = 7 - 5 \][/tex]
[tex]\[ 2a = 2 \][/tex]
[tex]\[ a = 1 \][/tex]
Substitute [tex]\( a = 1 \)[/tex] back into Equation 4:
[tex]\[ 3(1) + b = 5 \][/tex]
[tex]\[ 3 + b = 5 \][/tex]
[tex]\[ b = 2 \][/tex]
Substitute [tex]\( a = 1 \)[/tex] and [tex]\( b = 2 \)[/tex] into Equation 1:
[tex]\[ 1 + 2 + c = 3 \][/tex]
[tex]\[ 3 + c = 3 \][/tex]
[tex]\[ c = 0 \][/tex]
5. Write the general formula for the nth term:
Using [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = 0 \)[/tex], we get the nth term as:
[tex]\[ T_n = 1n^2 + 2n + 1 \implies T_n = n^2 + n + 1 \][/tex]
Thus, the nth term of the quadratic sequence [tex]\( 3, 8, 15, 24, 35, \ldots \)[/tex] is:
[tex]\[ n^2 + n + 1 \][/tex]
[tex]\[ a n^2 + b n + c \][/tex]
We need to determine the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]. Here are the steps:
1. Identify the first differences:
- Calculate the differences between consecutive terms of the sequence.
[tex]\[ 8 - 3 = 5 \][/tex]
[tex]\[ 15 - 8 = 7 \][/tex]
[tex]\[ 24 - 15 = 9 \][/tex]
[tex]\[ 35 - 24 = 11 \][/tex]
Thus, the first differences are:
[tex]\[ 5, 7, 9, 11 \][/tex]
2. Identify the second differences:
- Calculate the differences between consecutive terms of the first differences.
[tex]\[ 7 - 5 = 2 \][/tex]
[tex]\[ 9 - 7 = 2 \][/tex]
[tex]\[ 11 - 9 = 2 \][/tex]
Since the second differences are constant (equal to 2), we confirm that the sequence is quadratic.
3. Form the system of equations:
- Use the first three terms of the sequence to set up equations and solve for [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex].
Let’s use the terms for [tex]\( n = 1, 2, 3 \)[/tex]:
[tex]\[ T_1 = a(1)^2 + b(1) + c = 3 \quad \text{(Equation 1)} \][/tex]
[tex]\[ T_2 = a(2)^2 + b(2) + c = 8 \quad \text{(Equation 2)} \][/tex]
[tex]\[ T_3 = a(3)^2 + b(3) + c = 15 \quad \text{(Equation 3)} \][/tex]
These equations are:
[tex]\[ a + b + c = 3 \quad \text{(Equation 1)} \][/tex]
[tex]\[ 4a + 2b + c = 8 \quad \text{(Equation 2)} \][/tex]
[tex]\[ 9a + 3b + c = 15 \quad \text{(Equation 3)} \][/tex]
4. Solve the system of equations:
Subtract Equation 1 from Equation 2:
[tex]\[ (4a + 2b + c) - (a + b + c) = 8 - 3 \][/tex]
[tex]\[ 3a + b = 5 \quad \text{(Equation 4)} \][/tex]
Subtract Equation 2 from Equation 3:
[tex]\[ (9a + 3b + c) - (4a + 2b + c) = 15 - 8 \][/tex]
[tex]\[ 5a + b = 7 \quad \text{(Equation 5)} \][/tex]
Subtract Equation 4 from Equation 5:
[tex]\[ (5a + b) - (3a + b) = 7 - 5 \][/tex]
[tex]\[ 2a = 2 \][/tex]
[tex]\[ a = 1 \][/tex]
Substitute [tex]\( a = 1 \)[/tex] back into Equation 4:
[tex]\[ 3(1) + b = 5 \][/tex]
[tex]\[ 3 + b = 5 \][/tex]
[tex]\[ b = 2 \][/tex]
Substitute [tex]\( a = 1 \)[/tex] and [tex]\( b = 2 \)[/tex] into Equation 1:
[tex]\[ 1 + 2 + c = 3 \][/tex]
[tex]\[ 3 + c = 3 \][/tex]
[tex]\[ c = 0 \][/tex]
5. Write the general formula for the nth term:
Using [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = 0 \)[/tex], we get the nth term as:
[tex]\[ T_n = 1n^2 + 2n + 1 \implies T_n = n^2 + n + 1 \][/tex]
Thus, the nth term of the quadratic sequence [tex]\( 3, 8, 15, 24, 35, \ldots \)[/tex] is:
[tex]\[ n^2 + n + 1 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.