Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the measure of the unknown acute angle in the right triangle, we follow these steps:
1. Understand the Problem:
We are given:
- The length of the opposite side to the unknown angle is 4.8 feet.
- The length of the hypotenuse is 5.0 feet.
We need to find the measure of the angle.
2. Trigonometric Function:
We will use the sine function, which is defined as the ratio of the length of the opposite side to the length of the hypotenuse in a right triangle.
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]
Substituting the given values:
[tex]\[ \sin(\theta) = \frac{4.8}{5.0} \][/tex]
3. Calculate the Sine Value:
Simplify the fraction:
[tex]\[ \sin(\theta) = 0.96 \][/tex]
4. Determine the Angle:
To find the angle [tex]\( \theta \)[/tex], we need to use the inverse sine function (also known as arcsine), which will give us the angle whose sine is 0.96.
[tex]\[ \theta = \sin^{-1}(0.96) \][/tex]
5. Convert to Degrees:
After calculating the angle [tex]\( \theta \)[/tex] in radians, we convert it to degrees.
The result is:
[tex]\[ \theta \approx 73.7^{\circ} \][/tex]
Thus, the measure of the unknown angle is approximately [tex]\( 73.7^{\circ} \)[/tex].
Therefore, the correct answer is:
[tex]\[ 73.7^{\circ} \][/tex]
1. Understand the Problem:
We are given:
- The length of the opposite side to the unknown angle is 4.8 feet.
- The length of the hypotenuse is 5.0 feet.
We need to find the measure of the angle.
2. Trigonometric Function:
We will use the sine function, which is defined as the ratio of the length of the opposite side to the length of the hypotenuse in a right triangle.
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]
Substituting the given values:
[tex]\[ \sin(\theta) = \frac{4.8}{5.0} \][/tex]
3. Calculate the Sine Value:
Simplify the fraction:
[tex]\[ \sin(\theta) = 0.96 \][/tex]
4. Determine the Angle:
To find the angle [tex]\( \theta \)[/tex], we need to use the inverse sine function (also known as arcsine), which will give us the angle whose sine is 0.96.
[tex]\[ \theta = \sin^{-1}(0.96) \][/tex]
5. Convert to Degrees:
After calculating the angle [tex]\( \theta \)[/tex] in radians, we convert it to degrees.
The result is:
[tex]\[ \theta \approx 73.7^{\circ} \][/tex]
Thus, the measure of the unknown angle is approximately [tex]\( 73.7^{\circ} \)[/tex].
Therefore, the correct answer is:
[tex]\[ 73.7^{\circ} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.