Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the measure of an acute angle in a right triangle when you know the lengths of the opposite side and the adjacent side, you can use the tangent function from trigonometry.
The tangent of an angle in a right triangle is the ratio of the length of the opposite side to the length of the adjacent side. This relationship is expressed as:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Given:
- The length of the opposite side is [tex]\( 7 \)[/tex] inches.
- The length of the adjacent side is [tex]\( 4 \)[/tex] inches.
We need to find the angle [tex]\( \theta \)[/tex]. We start by calculating the ratio:
[tex]\[ \tan(\theta) = \frac{7}{4} \][/tex]
Next, we need to find the angle whose tangent is [tex]\( \frac{7}{4} \)[/tex]. This can be achieved by finding the inverse tangent (often denoted as [tex]\( \arctan \)[/tex] or [tex]\( \tan^{-1} \)[/tex]) of [tex]\( \frac{7}{4} \)[/tex]:
[tex]\[ \theta = \tan^{-1} \left( \frac{7}{4} \right) \][/tex]
This yields the angle in radians. However, we typically want the angle in degrees. Therefore, we convert the radians to degrees.
Performing this calculation, we get:
[tex]\[ \theta \approx 60.3^\circ \][/tex]
Thus, the measure of the angle is:
[tex]\[ \boxed{60.3^\circ} \][/tex]
So, the correct answer is:
60.3°.
The tangent of an angle in a right triangle is the ratio of the length of the opposite side to the length of the adjacent side. This relationship is expressed as:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Given:
- The length of the opposite side is [tex]\( 7 \)[/tex] inches.
- The length of the adjacent side is [tex]\( 4 \)[/tex] inches.
We need to find the angle [tex]\( \theta \)[/tex]. We start by calculating the ratio:
[tex]\[ \tan(\theta) = \frac{7}{4} \][/tex]
Next, we need to find the angle whose tangent is [tex]\( \frac{7}{4} \)[/tex]. This can be achieved by finding the inverse tangent (often denoted as [tex]\( \arctan \)[/tex] or [tex]\( \tan^{-1} \)[/tex]) of [tex]\( \frac{7}{4} \)[/tex]:
[tex]\[ \theta = \tan^{-1} \left( \frac{7}{4} \right) \][/tex]
This yields the angle in radians. However, we typically want the angle in degrees. Therefore, we convert the radians to degrees.
Performing this calculation, we get:
[tex]\[ \theta \approx 60.3^\circ \][/tex]
Thus, the measure of the angle is:
[tex]\[ \boxed{60.3^\circ} \][/tex]
So, the correct answer is:
60.3°.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.