Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's solve the quadratic equation step-by-step.
Given the equation:
[tex]\[ 4x^2 + 3 = 4x + 2 \][/tex]
First, we want to set the equation to zero by bringing all terms to one side:
[tex]\[ 4x^2 + 3 - 4x - 2 = 0 \][/tex]
Combine like terms:
[tex]\[ 4x^2 - 4x + 1 = 0 \][/tex]
This is a standard quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], where [tex]\( a = 4 \)[/tex], [tex]\( b = -4 \)[/tex], and [tex]\( c = 1 \)[/tex].
To solve the quadratic equation, we can use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Now substitute [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the quadratic formula:
[tex]\[ x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} \][/tex]
[tex]\[ x = \frac{4 \pm \sqrt{16 - 16}}{8} \][/tex]
[tex]\[ x = \frac{4 \pm \sqrt{0}}{8} \][/tex]
[tex]\[ x = \frac{4 \pm 0}{8} \][/tex]
[tex]\[ x = \frac{4}{8} \][/tex]
[tex]\[ x = \frac{1}{2} \][/tex]
Therefore, the solution to the quadratic equation is:
[tex]\[ x = \frac{1}{2} \][/tex]
So, the correct answer is:
A. [tex]\( x = \frac{1}{2} \)[/tex]
Given the equation:
[tex]\[ 4x^2 + 3 = 4x + 2 \][/tex]
First, we want to set the equation to zero by bringing all terms to one side:
[tex]\[ 4x^2 + 3 - 4x - 2 = 0 \][/tex]
Combine like terms:
[tex]\[ 4x^2 - 4x + 1 = 0 \][/tex]
This is a standard quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], where [tex]\( a = 4 \)[/tex], [tex]\( b = -4 \)[/tex], and [tex]\( c = 1 \)[/tex].
To solve the quadratic equation, we can use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Now substitute [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the quadratic formula:
[tex]\[ x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} \][/tex]
[tex]\[ x = \frac{4 \pm \sqrt{16 - 16}}{8} \][/tex]
[tex]\[ x = \frac{4 \pm \sqrt{0}}{8} \][/tex]
[tex]\[ x = \frac{4 \pm 0}{8} \][/tex]
[tex]\[ x = \frac{4}{8} \][/tex]
[tex]\[ x = \frac{1}{2} \][/tex]
Therefore, the solution to the quadratic equation is:
[tex]\[ x = \frac{1}{2} \][/tex]
So, the correct answer is:
A. [tex]\( x = \frac{1}{2} \)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.