Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To classify the given function [tex]\( f(x) = 10 \cdot 2^x \)[/tex], let's analyze its properties step-by-step:
1. Exponential Function:
The function [tex]\( f(x) = 10 \cdot 2^x \)[/tex] is of the form [tex]\( f(x) = a \cdot b^x \)[/tex], where [tex]\( a = 10 \)[/tex] and [tex]\( b = 2 \)[/tex]. This is a classic exponential function because it involves a constant base raised to the power of the variable [tex]\( x \)[/tex], scaled by a factor of 10.
2. Arithmetic Sequence:
An arithmetic sequence is defined by a common difference between consecutive terms and is given by the general form [tex]\( a_n = a + (n-1)d \)[/tex], where [tex]\( a \)[/tex] is the first term and [tex]\( d \)[/tex] is the common difference.
To check if our function is an arithmetic sequence, we would need it to satisfy the condition that there is a constant difference between consecutive outputs. For example, if we take two values [tex]\( f(n) \)[/tex] and [tex]\( f(n+1) \)[/tex]:
[tex]\[ f(n) = 10 \cdot 2^n \][/tex]
[tex]\[ f(n+1) = 10 \cdot 2^{n+1} = 10 \cdot 2 \cdot 2^n = 20 \cdot 2^n \][/tex]
The difference is:
[tex]\[ f(n+1) - f(n) = 20 \cdot 2^n - 10 \cdot 2^n = 10 \cdot 2^n (2 - 1) = 10 \cdot 2^n \][/tex]
The difference itself is not constant since it depends on [tex]\( n \)[/tex]. Thus, [tex]\( f(x) \)[/tex] is not an arithmetic sequence.
3. Geometric Sequence:
A geometric sequence is defined by a common ratio between consecutive terms and is given by the general form [tex]\( a_n = a \cdot r^{n-1} \)[/tex], where [tex]\( a \)[/tex] is the first term and [tex]\( r \)[/tex] is the common ratio.
For our function to be a geometric sequence, we would need a constant ratio between consecutive outputs. Let's take two values [tex]\( f(n) \)[/tex] and [tex]\( f(n+1) \)[/tex]:
[tex]\[ f(n) = 10 \cdot 2^n \][/tex]
[tex]\[ f(n+1) = 10 \cdot 2^{n+1} = 10 \cdot 2 \cdot 2^n = 20 \cdot 2^n \][/tex]
The ratio is:
[tex]\[ \frac{f(n+1)}{f(n)} = \frac{20 \cdot 2^n}{10 \cdot 2^n} = 2 \][/tex]
While the ratio is constant, the definition of a geometric sequence typically implies discrete values of [tex]\( n \)[/tex], not continuous as with our exponent [tex]\( x \)[/tex] in [tex]\( 10 \cdot 2^x \)[/tex]. Hence, we distinguish this as an exponential function rather than a geometric sequence.
Therefore, by eliminating both arithmetic and geometric sequences, and recognizing the exponential nature of the function, we classify:
[tex]\[ \boxed{a \, function} \][/tex]
1. Exponential Function:
The function [tex]\( f(x) = 10 \cdot 2^x \)[/tex] is of the form [tex]\( f(x) = a \cdot b^x \)[/tex], where [tex]\( a = 10 \)[/tex] and [tex]\( b = 2 \)[/tex]. This is a classic exponential function because it involves a constant base raised to the power of the variable [tex]\( x \)[/tex], scaled by a factor of 10.
2. Arithmetic Sequence:
An arithmetic sequence is defined by a common difference between consecutive terms and is given by the general form [tex]\( a_n = a + (n-1)d \)[/tex], where [tex]\( a \)[/tex] is the first term and [tex]\( d \)[/tex] is the common difference.
To check if our function is an arithmetic sequence, we would need it to satisfy the condition that there is a constant difference between consecutive outputs. For example, if we take two values [tex]\( f(n) \)[/tex] and [tex]\( f(n+1) \)[/tex]:
[tex]\[ f(n) = 10 \cdot 2^n \][/tex]
[tex]\[ f(n+1) = 10 \cdot 2^{n+1} = 10 \cdot 2 \cdot 2^n = 20 \cdot 2^n \][/tex]
The difference is:
[tex]\[ f(n+1) - f(n) = 20 \cdot 2^n - 10 \cdot 2^n = 10 \cdot 2^n (2 - 1) = 10 \cdot 2^n \][/tex]
The difference itself is not constant since it depends on [tex]\( n \)[/tex]. Thus, [tex]\( f(x) \)[/tex] is not an arithmetic sequence.
3. Geometric Sequence:
A geometric sequence is defined by a common ratio between consecutive terms and is given by the general form [tex]\( a_n = a \cdot r^{n-1} \)[/tex], where [tex]\( a \)[/tex] is the first term and [tex]\( r \)[/tex] is the common ratio.
For our function to be a geometric sequence, we would need a constant ratio between consecutive outputs. Let's take two values [tex]\( f(n) \)[/tex] and [tex]\( f(n+1) \)[/tex]:
[tex]\[ f(n) = 10 \cdot 2^n \][/tex]
[tex]\[ f(n+1) = 10 \cdot 2^{n+1} = 10 \cdot 2 \cdot 2^n = 20 \cdot 2^n \][/tex]
The ratio is:
[tex]\[ \frac{f(n+1)}{f(n)} = \frac{20 \cdot 2^n}{10 \cdot 2^n} = 2 \][/tex]
While the ratio is constant, the definition of a geometric sequence typically implies discrete values of [tex]\( n \)[/tex], not continuous as with our exponent [tex]\( x \)[/tex] in [tex]\( 10 \cdot 2^x \)[/tex]. Hence, we distinguish this as an exponential function rather than a geometric sequence.
Therefore, by eliminating both arithmetic and geometric sequences, and recognizing the exponential nature of the function, we classify:
[tex]\[ \boxed{a \, function} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.