Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the problem, let's break it down step-by-step using the given equation for the height of a ball in projectile motion:
[tex]\[ h(t) = a t^2 + v t + h_0 \][/tex]
Where:
- [tex]\( h(t) \)[/tex] is the height of the ball at time [tex]\( t \)[/tex],
- [tex]\( a \)[/tex] is the acceleration due to gravity, which is [tex]\(-16 \, \text{ft/s}^2 \)[/tex] (since gravity acts downward),
- [tex]\( v \)[/tex] is the initial upward velocity, which is [tex]\( 36 \, \text{ft/s} \)[/tex],
- [tex]\( h_0 \)[/tex] is the initial height of the ball, which is [tex]\( 4 \, \text{ft} \)[/tex],
- [tex]\( t \)[/tex] is the time after the ball is thrown, in seconds. In this case, [tex]\( t = 2 \)[/tex] seconds.
Let's plug in the values into the formula:
1. Initial height: [tex]\( h_0 = 4 \, \text{ft} \)[/tex]
2. Initial velocity: [tex]\( v = 36 \, \text{ft/s} \)[/tex]
3. Acceleration due to gravity: [tex]\( a = -16 \, \text{ft/s}^2 \)[/tex]
4. Time: [tex]\( t = 2 \)[/tex] seconds
Now substitute these values into the equation:
[tex]\[ h(2) = (-16) (2)^2 + (36) (2) + 4 \][/tex]
Calculate each term step by step:
1. [tex]\( (-16) (2)^2 = (-16) (4) = -64 \)[/tex]
2. [tex]\( (36) (2) = 72 \)[/tex]
Now, add these results along with the initial height:
[tex]\[ h(2) = -64 + 72 + 4 \][/tex]
Perform the addition:
[tex]\[ h(2) = 12 \][/tex]
Therefore, the height of the ball 2 seconds after it is thrown is:
[tex]\[ \boxed{12 \, \text{ft}} \][/tex]
[tex]\[ h(t) = a t^2 + v t + h_0 \][/tex]
Where:
- [tex]\( h(t) \)[/tex] is the height of the ball at time [tex]\( t \)[/tex],
- [tex]\( a \)[/tex] is the acceleration due to gravity, which is [tex]\(-16 \, \text{ft/s}^2 \)[/tex] (since gravity acts downward),
- [tex]\( v \)[/tex] is the initial upward velocity, which is [tex]\( 36 \, \text{ft/s} \)[/tex],
- [tex]\( h_0 \)[/tex] is the initial height of the ball, which is [tex]\( 4 \, \text{ft} \)[/tex],
- [tex]\( t \)[/tex] is the time after the ball is thrown, in seconds. In this case, [tex]\( t = 2 \)[/tex] seconds.
Let's plug in the values into the formula:
1. Initial height: [tex]\( h_0 = 4 \, \text{ft} \)[/tex]
2. Initial velocity: [tex]\( v = 36 \, \text{ft/s} \)[/tex]
3. Acceleration due to gravity: [tex]\( a = -16 \, \text{ft/s}^2 \)[/tex]
4. Time: [tex]\( t = 2 \)[/tex] seconds
Now substitute these values into the equation:
[tex]\[ h(2) = (-16) (2)^2 + (36) (2) + 4 \][/tex]
Calculate each term step by step:
1. [tex]\( (-16) (2)^2 = (-16) (4) = -64 \)[/tex]
2. [tex]\( (36) (2) = 72 \)[/tex]
Now, add these results along with the initial height:
[tex]\[ h(2) = -64 + 72 + 4 \][/tex]
Perform the addition:
[tex]\[ h(2) = 12 \][/tex]
Therefore, the height of the ball 2 seconds after it is thrown is:
[tex]\[ \boxed{12 \, \text{ft}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.