Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem, let's break it down step-by-step using the given equation for the height of a ball in projectile motion:
[tex]\[ h(t) = a t^2 + v t + h_0 \][/tex]
Where:
- [tex]\( h(t) \)[/tex] is the height of the ball at time [tex]\( t \)[/tex],
- [tex]\( a \)[/tex] is the acceleration due to gravity, which is [tex]\(-16 \, \text{ft/s}^2 \)[/tex] (since gravity acts downward),
- [tex]\( v \)[/tex] is the initial upward velocity, which is [tex]\( 36 \, \text{ft/s} \)[/tex],
- [tex]\( h_0 \)[/tex] is the initial height of the ball, which is [tex]\( 4 \, \text{ft} \)[/tex],
- [tex]\( t \)[/tex] is the time after the ball is thrown, in seconds. In this case, [tex]\( t = 2 \)[/tex] seconds.
Let's plug in the values into the formula:
1. Initial height: [tex]\( h_0 = 4 \, \text{ft} \)[/tex]
2. Initial velocity: [tex]\( v = 36 \, \text{ft/s} \)[/tex]
3. Acceleration due to gravity: [tex]\( a = -16 \, \text{ft/s}^2 \)[/tex]
4. Time: [tex]\( t = 2 \)[/tex] seconds
Now substitute these values into the equation:
[tex]\[ h(2) = (-16) (2)^2 + (36) (2) + 4 \][/tex]
Calculate each term step by step:
1. [tex]\( (-16) (2)^2 = (-16) (4) = -64 \)[/tex]
2. [tex]\( (36) (2) = 72 \)[/tex]
Now, add these results along with the initial height:
[tex]\[ h(2) = -64 + 72 + 4 \][/tex]
Perform the addition:
[tex]\[ h(2) = 12 \][/tex]
Therefore, the height of the ball 2 seconds after it is thrown is:
[tex]\[ \boxed{12 \, \text{ft}} \][/tex]
[tex]\[ h(t) = a t^2 + v t + h_0 \][/tex]
Where:
- [tex]\( h(t) \)[/tex] is the height of the ball at time [tex]\( t \)[/tex],
- [tex]\( a \)[/tex] is the acceleration due to gravity, which is [tex]\(-16 \, \text{ft/s}^2 \)[/tex] (since gravity acts downward),
- [tex]\( v \)[/tex] is the initial upward velocity, which is [tex]\( 36 \, \text{ft/s} \)[/tex],
- [tex]\( h_0 \)[/tex] is the initial height of the ball, which is [tex]\( 4 \, \text{ft} \)[/tex],
- [tex]\( t \)[/tex] is the time after the ball is thrown, in seconds. In this case, [tex]\( t = 2 \)[/tex] seconds.
Let's plug in the values into the formula:
1. Initial height: [tex]\( h_0 = 4 \, \text{ft} \)[/tex]
2. Initial velocity: [tex]\( v = 36 \, \text{ft/s} \)[/tex]
3. Acceleration due to gravity: [tex]\( a = -16 \, \text{ft/s}^2 \)[/tex]
4. Time: [tex]\( t = 2 \)[/tex] seconds
Now substitute these values into the equation:
[tex]\[ h(2) = (-16) (2)^2 + (36) (2) + 4 \][/tex]
Calculate each term step by step:
1. [tex]\( (-16) (2)^2 = (-16) (4) = -64 \)[/tex]
2. [tex]\( (36) (2) = 72 \)[/tex]
Now, add these results along with the initial height:
[tex]\[ h(2) = -64 + 72 + 4 \][/tex]
Perform the addition:
[tex]\[ h(2) = 12 \][/tex]
Therefore, the height of the ball 2 seconds after it is thrown is:
[tex]\[ \boxed{12 \, \text{ft}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.