Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the inverse of a conditional statement, we negate both the hypothesis (the "if" part) and the conclusion (the "then" part).
The original statement is: "If a number is a prime number, then it has no factors other than one and itself."
Negate both parts:
- The hypothesis (a number is a prime number) becomes: a number is not a prime number.
- The conclusion (it has no factors other than one and itself) becomes: it has factors other than one and itself.
By combining these negations, the inverse of the statement is: "If a number is not a prime number, then it has factors other than one and itself."
So, the correct answer is:
"If a number is not a prime number, then it has factors other than one and itself."
The original statement is: "If a number is a prime number, then it has no factors other than one and itself."
Negate both parts:
- The hypothesis (a number is a prime number) becomes: a number is not a prime number.
- The conclusion (it has no factors other than one and itself) becomes: it has factors other than one and itself.
By combining these negations, the inverse of the statement is: "If a number is not a prime number, then it has factors other than one and itself."
So, the correct answer is:
"If a number is not a prime number, then it has factors other than one and itself."
A. If a number is not a prime number, then it has factors other than one and itself.
To find the inverse of a conditional statement, you negate both the hypothesis and the conclusion. The original statement is:
"If a number is a prime number, then it has no factors other than one and itself."
Let's denote:
-p: "a number is a prime number"
-q: "it has no factors other than one and itself"
The original statement is p→q.
The inverse of this statement is ¬p→¬q
-¬p: "a number is not a prime number"
-¬q: "it has factors other than one and itself"
So, the inverse is: "If a number is not a prime number, then it has factors other than one and itself."
To find the inverse of a conditional statement, you negate both the hypothesis and the conclusion. The original statement is:
"If a number is a prime number, then it has no factors other than one and itself."
Let's denote:
-p: "a number is a prime number"
-q: "it has no factors other than one and itself"
The original statement is p→q.
The inverse of this statement is ¬p→¬q
-¬p: "a number is not a prime number"
-¬q: "it has factors other than one and itself"
So, the inverse is: "If a number is not a prime number, then it has factors other than one and itself."
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.