Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the correct conclusion for this hypothesis test, let's walk through the steps involved:
1. Hypotheses Setting:
- Null Hypothesis [tex]\( H_0 \)[/tex]: [tex]\( p_A - p_B = 0 \)[/tex], meaning there is no difference in the proportions of defective computer chips between plant [tex]\( A \)[/tex] and plant [tex]\( B \)[/tex].
- Alternative Hypothesis [tex]\( H_1 \)[/tex]: [tex]\( p_A - p_B > 0 \)[/tex], meaning the proportion of defective computer chips at plant [tex]\( A \)[/tex] is greater than at plant [tex]\( B \)[/tex].
2. Level of Significance ([tex]\(\alpha\)[/tex]):
- The significance level [tex]\(\alpha\)[/tex] is given as 0.05.
3. P-value:
- The p-value from the test is given as 0.225.
4. Decision Rule:
- To decide whether to reject the null hypothesis, we compare the p-value to the level of significance.
- If the p-value is less than [tex]\(\alpha\)[/tex] ([tex]\( p \leq \alpha \)[/tex]), we reject the null hypothesis.
- If the p-value is greater than [tex]\(\alpha\)[/tex] ([tex]\( p > \alpha \)[/tex]), we fail to reject the null hypothesis.
5. Comparison:
- Here, the p-value is 0.225.
- The level of significance [tex]\(\alpha\)[/tex] is 0.05.
- Since the p-value (0.225) is greater than [tex]\(\alpha\)[/tex] (0.05), we fail to reject the null hypothesis.
6. Conclusion:
- By failing to reject the null hypothesis, it means there is insufficient evidence to support the claim that the proportion of defective computer chips is significantly greater at plant [tex]\( A \)[/tex].
Therefore, the correct conclusion is:
The owner should fail to reject the null hypothesis since [tex]\( 0.225 > 0.05 \)[/tex]. There is insufficient evidence that the proportion of defective computer chips is significantly greater at plant [tex]\( A \)[/tex].
Hence, the correct option is:
The owner should fail to reject the null hypothesis since [tex]\( 0.225 > 0.05 \)[/tex]. There is insufficient evidence that the proportion of defective computer chips is significantly greater at plant [tex]\( A \)[/tex].
1. Hypotheses Setting:
- Null Hypothesis [tex]\( H_0 \)[/tex]: [tex]\( p_A - p_B = 0 \)[/tex], meaning there is no difference in the proportions of defective computer chips between plant [tex]\( A \)[/tex] and plant [tex]\( B \)[/tex].
- Alternative Hypothesis [tex]\( H_1 \)[/tex]: [tex]\( p_A - p_B > 0 \)[/tex], meaning the proportion of defective computer chips at plant [tex]\( A \)[/tex] is greater than at plant [tex]\( B \)[/tex].
2. Level of Significance ([tex]\(\alpha\)[/tex]):
- The significance level [tex]\(\alpha\)[/tex] is given as 0.05.
3. P-value:
- The p-value from the test is given as 0.225.
4. Decision Rule:
- To decide whether to reject the null hypothesis, we compare the p-value to the level of significance.
- If the p-value is less than [tex]\(\alpha\)[/tex] ([tex]\( p \leq \alpha \)[/tex]), we reject the null hypothesis.
- If the p-value is greater than [tex]\(\alpha\)[/tex] ([tex]\( p > \alpha \)[/tex]), we fail to reject the null hypothesis.
5. Comparison:
- Here, the p-value is 0.225.
- The level of significance [tex]\(\alpha\)[/tex] is 0.05.
- Since the p-value (0.225) is greater than [tex]\(\alpha\)[/tex] (0.05), we fail to reject the null hypothesis.
6. Conclusion:
- By failing to reject the null hypothesis, it means there is insufficient evidence to support the claim that the proportion of defective computer chips is significantly greater at plant [tex]\( A \)[/tex].
Therefore, the correct conclusion is:
The owner should fail to reject the null hypothesis since [tex]\( 0.225 > 0.05 \)[/tex]. There is insufficient evidence that the proportion of defective computer chips is significantly greater at plant [tex]\( A \)[/tex].
Hence, the correct option is:
The owner should fail to reject the null hypothesis since [tex]\( 0.225 > 0.05 \)[/tex]. There is insufficient evidence that the proportion of defective computer chips is significantly greater at plant [tex]\( A \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.