Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Write a function for the geometric sequence with a starting term of 128 and a common ratio of [tex]\( \frac{1}{2} \)[/tex]. Find the fifth term.

A. [tex]\( f(n) = 128 \cdot \left( \frac{1}{2} \right)^{n-1} \)[/tex], the fifth term is 8
B. [tex]\( f(n) = -\frac{1}{2} \cdot 8^{n-1} \)[/tex], the fifth term is -2,048
C. [tex]\( f(n) = 128 \cdot \left( \frac{1}{2} \right)^{n-1} \)[/tex], the fifth term is 4
D. [tex]\( f(n) = 128 \cdot \left( -\frac{1}{2} \right)^{n-1} \)[/tex], the fifth term is -8

Sagot :

To address this question, we first need to verify the form of the function and then calculate the fifth term using the correct function.

1. The correct form of the geometric sequence provided is:
[tex]\[ f(n) = 128 \cdot \left(\frac{1}{2}\right)^{n-1} \][/tex]
Here, [tex]\(128\)[/tex] is the starting term (first term) of the sequence, and [tex]\(\frac{1}{2}\)[/tex] is the common ratio.

2. To find the fifth term, we substitute [tex]\(n = 5\)[/tex] into the function:
[tex]\[ f(5) = 128 \cdot \left(\frac{1}{2}\right)^{5-1} \][/tex]
[tex]\[ f(5) = 128 \cdot \left(\frac{1}{2}\right)^4 \][/tex]

3. Evaluating [tex]\(\left(\frac{1}{2}\right)^4\)[/tex]:

[tex]\[ \left(\frac{1}{2}\right)^4 = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16} \][/tex]

4. Now, multiply the starting term [tex]\(128\)[/tex] by [tex]\(\frac{1}{16}\)[/tex]:
[tex]\[ 128 \cdot \frac{1}{16} = 8 \][/tex]

Thus, the fifth term of the geometric sequence is [tex]\(8.0\)[/tex].

Therefore, the correct option from the provided list is:
[tex]\[ f(n) = 128 \cdot \left(\frac{1}{2}\right)^{n-1}, \text{ the fifth term is } 8 \][/tex]