Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's factor the expression [tex]\(18x^2 - 8\)[/tex] using two suitable methods: factoring out the Greatest Common Factor (GCF) and using the difference of squares rule.
### Method 1: Factoring out the GCF
1. Identify the GCF of the coefficients: The coefficients are 18 and 8. The GCF of 18 and 8 is 2.
2. Factor out the GCF:
[tex]\[ 18x^2 - 8 = 2 \cdot 9x^2 - 2 \cdot 4 \][/tex]
This can be rewritten by factoring out the GCF (which is 2):
[tex]\[ 18x^2 - 8 = 2(9x^2 - 4) \][/tex]
### Method 2: Using the Difference of Squares Rule
[tex]\[ 9x^2 - 4 \][/tex] can be recognized as a difference of squares.
1. Recall the difference of squares formula: [tex]\( a^2 - b^2 = (a + b)(a - b) \)[/tex].
2. Rewrite [tex]\(9x^2 - 4\)[/tex] as a difference of squares:
[tex]\[ 9x^2 = (3x)^2 \quad \text{and} \quad 4 = 2^2 \][/tex]
Thus,
[tex]\[ 9x^2 - 4 = (3x)^2 - 2^2 \][/tex]
3. Apply the difference of squares formula:
[tex]\[ (3x)^2 - 2^2 = (3x + 2)(3x - 2) \][/tex]
So putting it all together:
[tex]\[ 18x^2 - 8 = 2(9x^2 - 4) = 2(3x + 2)(3x - 2) \][/tex]
### Summary
The two best methods to factor the expression [tex]\(18x^2 - 8\)[/tex] are:
1. Factoring out the GCF: [tex]\(2(9x^2 - 4)\)[/tex]
2. Using the difference of squares rule: [tex]\(2(3x + 2)(3x - 2)\)[/tex]
Thus, the fully factored form of [tex]\(18x^2 - 8\)[/tex] is:
[tex]\[ 2(3x + 2)(3x - 2) \][/tex]
### Method 1: Factoring out the GCF
1. Identify the GCF of the coefficients: The coefficients are 18 and 8. The GCF of 18 and 8 is 2.
2. Factor out the GCF:
[tex]\[ 18x^2 - 8 = 2 \cdot 9x^2 - 2 \cdot 4 \][/tex]
This can be rewritten by factoring out the GCF (which is 2):
[tex]\[ 18x^2 - 8 = 2(9x^2 - 4) \][/tex]
### Method 2: Using the Difference of Squares Rule
[tex]\[ 9x^2 - 4 \][/tex] can be recognized as a difference of squares.
1. Recall the difference of squares formula: [tex]\( a^2 - b^2 = (a + b)(a - b) \)[/tex].
2. Rewrite [tex]\(9x^2 - 4\)[/tex] as a difference of squares:
[tex]\[ 9x^2 = (3x)^2 \quad \text{and} \quad 4 = 2^2 \][/tex]
Thus,
[tex]\[ 9x^2 - 4 = (3x)^2 - 2^2 \][/tex]
3. Apply the difference of squares formula:
[tex]\[ (3x)^2 - 2^2 = (3x + 2)(3x - 2) \][/tex]
So putting it all together:
[tex]\[ 18x^2 - 8 = 2(9x^2 - 4) = 2(3x + 2)(3x - 2) \][/tex]
### Summary
The two best methods to factor the expression [tex]\(18x^2 - 8\)[/tex] are:
1. Factoring out the GCF: [tex]\(2(9x^2 - 4)\)[/tex]
2. Using the difference of squares rule: [tex]\(2(3x + 2)(3x - 2)\)[/tex]
Thus, the fully factored form of [tex]\(18x^2 - 8\)[/tex] is:
[tex]\[ 2(3x + 2)(3x - 2) \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.