Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\(2x^2 - 6x = -4\)[/tex] by factoring, follow these steps:
1. Rewrite the equation in standard quadratic form:
The standard quadratic form is [tex]\(ax^2 + bx + c = 0\)[/tex]. Start by moving all terms to one side of the equation:
[tex]\[ 2x^2 - 6x + 4 = 0 \][/tex]
2. Factor the quadratic equation:
First, we look for two numbers that multiply to [tex]\((2 \cdot 4 = 8)\)[/tex] and add up to [tex]\(-6\)[/tex]. The correct pair of numbers is [tex]\(-4\)[/tex] and [tex]\(-2\)[/tex]. So we can rewrite the middle term [tex]\(-6x\)[/tex] as [tex]\(-4x - 2x\)[/tex]:
[tex]\[ 2x^2 - 4x - 2x + 4 = 0 \][/tex]
Next, group the terms to factor by grouping:
[tex]\[ (2x^2 - 4x) - (2x - 4) = 0 \][/tex]
Factor out the greatest common factor from each group:
[tex]\[ 2x(x - 2) - 2(x - 2) = 0 \][/tex]
Notice that [tex]\((x - 2)\)[/tex] is common in both groups, so we factor it out:
[tex]\[ (2x - 2)(x - 2) = 0 \][/tex]
3. Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
We now have two factors which can be set to zero:
[tex]\[ 2x - 2 = 0 \quad \text{or} \quad x - 2 = 0 \][/tex]
Solve each equation for [tex]\(x\)[/tex]:
[tex]\[ \begin{aligned} 2x - 2 &= 0 \\ 2x &= 2 \\ x &= 1 \end{aligned} \][/tex]
[tex]\[ \begin{aligned} x - 2 &= 0 \\ x &= 2 \end{aligned} \][/tex]
4. Final solutions:
The solutions to the equation [tex]\(2x^2 - 6x + 4 = 0\)[/tex] are:
[tex]\[ x = 1, \quad x = 2 \][/tex]
Therefore, the solutions are:
[tex]\[ x = \boxed{1} \][/tex]
[tex]\[ x = \boxed{2} \][/tex]
1. Rewrite the equation in standard quadratic form:
The standard quadratic form is [tex]\(ax^2 + bx + c = 0\)[/tex]. Start by moving all terms to one side of the equation:
[tex]\[ 2x^2 - 6x + 4 = 0 \][/tex]
2. Factor the quadratic equation:
First, we look for two numbers that multiply to [tex]\((2 \cdot 4 = 8)\)[/tex] and add up to [tex]\(-6\)[/tex]. The correct pair of numbers is [tex]\(-4\)[/tex] and [tex]\(-2\)[/tex]. So we can rewrite the middle term [tex]\(-6x\)[/tex] as [tex]\(-4x - 2x\)[/tex]:
[tex]\[ 2x^2 - 4x - 2x + 4 = 0 \][/tex]
Next, group the terms to factor by grouping:
[tex]\[ (2x^2 - 4x) - (2x - 4) = 0 \][/tex]
Factor out the greatest common factor from each group:
[tex]\[ 2x(x - 2) - 2(x - 2) = 0 \][/tex]
Notice that [tex]\((x - 2)\)[/tex] is common in both groups, so we factor it out:
[tex]\[ (2x - 2)(x - 2) = 0 \][/tex]
3. Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
We now have two factors which can be set to zero:
[tex]\[ 2x - 2 = 0 \quad \text{or} \quad x - 2 = 0 \][/tex]
Solve each equation for [tex]\(x\)[/tex]:
[tex]\[ \begin{aligned} 2x - 2 &= 0 \\ 2x &= 2 \\ x &= 1 \end{aligned} \][/tex]
[tex]\[ \begin{aligned} x - 2 &= 0 \\ x &= 2 \end{aligned} \][/tex]
4. Final solutions:
The solutions to the equation [tex]\(2x^2 - 6x + 4 = 0\)[/tex] are:
[tex]\[ x = 1, \quad x = 2 \][/tex]
Therefore, the solutions are:
[tex]\[ x = \boxed{1} \][/tex]
[tex]\[ x = \boxed{2} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.