Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To define a geometric sequence recursively, you start with an initial term and a common ratio. The general form for the recursive definition of a geometric sequence is:
[tex]\[ f(1) = a \][/tex]
[tex]\[ f(n) = f(n-1) \cdot r \quad \text{for} \quad n > 1 \][/tex]
Where:
- [tex]\(a\)[/tex] is the first term,
- [tex]\(r\)[/tex] is the common ratio.
Given that the first term [tex]\(a\)[/tex] is [tex]\(\frac{1}{5}\)[/tex] and the common ratio [tex]\(r\)[/tex] is 5, the recursive definition for the sequence is:
[tex]\[ f(1) = \frac{1}{5} \][/tex]
[tex]\[ f(n) = f(n-1) \cdot 5 \quad \text{for} \quad n > 1 \][/tex]
Now, let's use this definition to find the first few terms of the sequence.
1. First term:
[tex]\[ f(1) = \frac{1}{5} = 0.2 \][/tex]
2. Second term:
[tex]\[ f(2) = f(1) \cdot 5 = \left(\frac{1}{5}\right) \cdot 5 = 1.0 \][/tex]
3. Third term:
[tex]\[ f(3) = f(2) \cdot 5 = 1 \cdot 5 = 5.0 \][/tex]
4. Fourth term:
[tex]\[ f(4) = f(3) \cdot 5 = 5 \cdot 5 = 25.0 \][/tex]
5. Fifth term:
[tex]\[ f(5) = f(4) \cdot 5 = 25 \cdot 5 = 125.0 \][/tex]
Therefore, the first five terms of the geometric sequence are:
[tex]\[ 0.2, 1.0, 5.0, 25.0, 125.0 \][/tex]
These terms satisfy the conditions of the problem and correctly illustrate the recursive definition of the geometric sequence.
[tex]\[ f(1) = a \][/tex]
[tex]\[ f(n) = f(n-1) \cdot r \quad \text{for} \quad n > 1 \][/tex]
Where:
- [tex]\(a\)[/tex] is the first term,
- [tex]\(r\)[/tex] is the common ratio.
Given that the first term [tex]\(a\)[/tex] is [tex]\(\frac{1}{5}\)[/tex] and the common ratio [tex]\(r\)[/tex] is 5, the recursive definition for the sequence is:
[tex]\[ f(1) = \frac{1}{5} \][/tex]
[tex]\[ f(n) = f(n-1) \cdot 5 \quad \text{for} \quad n > 1 \][/tex]
Now, let's use this definition to find the first few terms of the sequence.
1. First term:
[tex]\[ f(1) = \frac{1}{5} = 0.2 \][/tex]
2. Second term:
[tex]\[ f(2) = f(1) \cdot 5 = \left(\frac{1}{5}\right) \cdot 5 = 1.0 \][/tex]
3. Third term:
[tex]\[ f(3) = f(2) \cdot 5 = 1 \cdot 5 = 5.0 \][/tex]
4. Fourth term:
[tex]\[ f(4) = f(3) \cdot 5 = 5 \cdot 5 = 25.0 \][/tex]
5. Fifth term:
[tex]\[ f(5) = f(4) \cdot 5 = 25 \cdot 5 = 125.0 \][/tex]
Therefore, the first five terms of the geometric sequence are:
[tex]\[ 0.2, 1.0, 5.0, 25.0, 125.0 \][/tex]
These terms satisfy the conditions of the problem and correctly illustrate the recursive definition of the geometric sequence.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.