Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve the problem step-by-step to determine if Wilson's claim about a cylinder's volume with given dimensions is correct.
### Given Data:
1. Cylinder diameter, [tex]\( d = 10 \)[/tex] inches.
2. Volume of a cone, [tex]\( V_{\text{cone}} = 50\pi \)[/tex] cubic inches.
We are checking the volumes of two cylinders with different heights:
1. Cylinder height, [tex]\( h = 2 \)[/tex] inches.
2. Cylinder height, [tex]\( h = 6 \)[/tex] inches.
### Step-by-Step Calculation:
1. Calculate the radius of the cylinder:
Since the diameter [tex]\( d = 10 \)[/tex] inches,
[tex]\[ \text{Radius, } r = \frac{d}{2} = \frac{10}{2} = 5 \text{ inches} \][/tex]
2. Volume of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
3. Calculate the volume of the cylinder with height [tex]\( h = 2 \)[/tex] inches:
[tex]\[ V_1 = \pi (5)^2 (2) = \pi \cdot 25 \cdot 2 = 50\pi \text{ cubic inches} \][/tex]
4. Calculate the volume of the cylinder with height [tex]\( h = 6 \)[/tex] inches:
[tex]\[ V_2 = \pi (5)^2 (6) = \pi \cdot 25 \cdot 6 = 150\pi \text{ cubic inches} \][/tex]
### Conclusion:
- For a cylinder with [tex]\( d = 10 \)[/tex] inches and [tex]\( h = 2 \)[/tex] inches, the volume is [tex]\( 50\pi \)[/tex] cubic inches. Hence, Wilson is correct in stating that this volume matches the volume of the cone, [tex]\( 50\pi \)[/tex] cubic inches.
- For a cylinder with [tex]\( d = 10 \)[/tex] inches and [tex]\( h = 6 \)[/tex] inches, the volume is [tex]\( 150\pi \)[/tex] cubic inches, which does not match the volume of the cone.
### Answer Choices Evaluation:
- Option 1: A cylinder in which [tex]\( h = 2 \)[/tex] and [tex]\( d = 10 \)[/tex] has a volume of [tex]\( 50 \pi \)[/tex] in [tex]\( ^3 \)[/tex]; therefore, Wilson is correct. (True)
- Option 2: A cylinder in which [tex]\( h = 6 \)[/tex] and [tex]\( d = 10 \)[/tex] has a volume of [tex]\( 50 \pi \)[/tex] in [tex]\( ^3 \)[/tex]; therefore, Wilson is correct. (False)
- Option 3: A cylinder in which [tex]\( h = 2 \)[/tex] and [tex]\( d = 10 \)[/tex] has a volume of [tex]\( 150 \pi \)[/tex] in [tex]\( ^3 \)[/tex]; therefore, Wilson is incorrect. (False)
- Option 4: A cylinder in which [tex]\( h = 6 \)[/tex] and [tex]\( d = 10 \)[/tex] has a volume of [tex]\( 150 \pi \)[/tex] in [tex]\( ^3 \)[/tex]; therefore, Wilson is incorrect. (True)
The answers to the multiple-choice options are Option 1 and Option 4.
### Given Data:
1. Cylinder diameter, [tex]\( d = 10 \)[/tex] inches.
2. Volume of a cone, [tex]\( V_{\text{cone}} = 50\pi \)[/tex] cubic inches.
We are checking the volumes of two cylinders with different heights:
1. Cylinder height, [tex]\( h = 2 \)[/tex] inches.
2. Cylinder height, [tex]\( h = 6 \)[/tex] inches.
### Step-by-Step Calculation:
1. Calculate the radius of the cylinder:
Since the diameter [tex]\( d = 10 \)[/tex] inches,
[tex]\[ \text{Radius, } r = \frac{d}{2} = \frac{10}{2} = 5 \text{ inches} \][/tex]
2. Volume of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
3. Calculate the volume of the cylinder with height [tex]\( h = 2 \)[/tex] inches:
[tex]\[ V_1 = \pi (5)^2 (2) = \pi \cdot 25 \cdot 2 = 50\pi \text{ cubic inches} \][/tex]
4. Calculate the volume of the cylinder with height [tex]\( h = 6 \)[/tex] inches:
[tex]\[ V_2 = \pi (5)^2 (6) = \pi \cdot 25 \cdot 6 = 150\pi \text{ cubic inches} \][/tex]
### Conclusion:
- For a cylinder with [tex]\( d = 10 \)[/tex] inches and [tex]\( h = 2 \)[/tex] inches, the volume is [tex]\( 50\pi \)[/tex] cubic inches. Hence, Wilson is correct in stating that this volume matches the volume of the cone, [tex]\( 50\pi \)[/tex] cubic inches.
- For a cylinder with [tex]\( d = 10 \)[/tex] inches and [tex]\( h = 6 \)[/tex] inches, the volume is [tex]\( 150\pi \)[/tex] cubic inches, which does not match the volume of the cone.
### Answer Choices Evaluation:
- Option 1: A cylinder in which [tex]\( h = 2 \)[/tex] and [tex]\( d = 10 \)[/tex] has a volume of [tex]\( 50 \pi \)[/tex] in [tex]\( ^3 \)[/tex]; therefore, Wilson is correct. (True)
- Option 2: A cylinder in which [tex]\( h = 6 \)[/tex] and [tex]\( d = 10 \)[/tex] has a volume of [tex]\( 50 \pi \)[/tex] in [tex]\( ^3 \)[/tex]; therefore, Wilson is correct. (False)
- Option 3: A cylinder in which [tex]\( h = 2 \)[/tex] and [tex]\( d = 10 \)[/tex] has a volume of [tex]\( 150 \pi \)[/tex] in [tex]\( ^3 \)[/tex]; therefore, Wilson is incorrect. (False)
- Option 4: A cylinder in which [tex]\( h = 6 \)[/tex] and [tex]\( d = 10 \)[/tex] has a volume of [tex]\( 150 \pi \)[/tex] in [tex]\( ^3 \)[/tex]; therefore, Wilson is incorrect. (True)
The answers to the multiple-choice options are Option 1 and Option 4.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.