At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's go through this step by step.
Step 1: Identify the known values.
- The index of refraction for glass, [tex]\( n_{\text{glass}} = 1.50 \)[/tex]
- The index of refraction for water, [tex]\( n_{\text{water}} = 1.33 \)[/tex]
- The angle of incidence in the glass, [tex]\( \theta_{\text{glass}} = 35^\circ \)[/tex]
Step 2: Use Snell's Law to find the angle of refraction in water.
Snell's Law is given by:
[tex]\[ n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \][/tex]
Rearranging to solve for [tex]\(\theta_2\)[/tex]:
[tex]\[ \theta_2 = \sin^{-1}\left(\frac{n_1 \sin(\theta_1)}{n_2}\right) \][/tex]
Plug in the known values:
[tex]\[ \theta_{\text{water}} = \sin^{-1}\left(\frac{1.50 \cdot \sin(35^\circ)}{1.33}\right) \][/tex]
Step 3: Calculation.
Evaluate the expression inside the sine inverse function:
- First, compute [tex]\(\sin(35^\circ)\)[/tex]. Let's convert 35 degrees to radians and find [tex]\(\sin(35^\circ)\)[/tex].
- [tex]\(\sin(35^\circ) \approx 0.5736\)[/tex]
- Now, calculate the ratio [tex]\(\frac{1.50 \cdot 0.5736}{1.33} \approx 0.6468\)[/tex]
Next, use the inverse sine (arcsine) function to find the angle whose sine is approximately 0.6468.
[tex]\[ \theta_{\text{water}} = \sin^{-1}(0.6468) \approx 40.3^\circ \][/tex]
Step 4: Conclusion.
Based on the calculations, the angle of refraction as the light wave passes from glass into water is approximately [tex]\(40.3^\circ\)[/tex].
Therefore, the correct answer is:
C. [tex]\(40.3^\circ\)[/tex]
Step 1: Identify the known values.
- The index of refraction for glass, [tex]\( n_{\text{glass}} = 1.50 \)[/tex]
- The index of refraction for water, [tex]\( n_{\text{water}} = 1.33 \)[/tex]
- The angle of incidence in the glass, [tex]\( \theta_{\text{glass}} = 35^\circ \)[/tex]
Step 2: Use Snell's Law to find the angle of refraction in water.
Snell's Law is given by:
[tex]\[ n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \][/tex]
Rearranging to solve for [tex]\(\theta_2\)[/tex]:
[tex]\[ \theta_2 = \sin^{-1}\left(\frac{n_1 \sin(\theta_1)}{n_2}\right) \][/tex]
Plug in the known values:
[tex]\[ \theta_{\text{water}} = \sin^{-1}\left(\frac{1.50 \cdot \sin(35^\circ)}{1.33}\right) \][/tex]
Step 3: Calculation.
Evaluate the expression inside the sine inverse function:
- First, compute [tex]\(\sin(35^\circ)\)[/tex]. Let's convert 35 degrees to radians and find [tex]\(\sin(35^\circ)\)[/tex].
- [tex]\(\sin(35^\circ) \approx 0.5736\)[/tex]
- Now, calculate the ratio [tex]\(\frac{1.50 \cdot 0.5736}{1.33} \approx 0.6468\)[/tex]
Next, use the inverse sine (arcsine) function to find the angle whose sine is approximately 0.6468.
[tex]\[ \theta_{\text{water}} = \sin^{-1}(0.6468) \approx 40.3^\circ \][/tex]
Step 4: Conclusion.
Based on the calculations, the angle of refraction as the light wave passes from glass into water is approximately [tex]\(40.3^\circ\)[/tex].
Therefore, the correct answer is:
C. [tex]\(40.3^\circ\)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.