Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the quadratic equation [tex]\(3x^2 + 6x + 15 = 0\)[/tex], we will use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients of the equation [tex]\(3x^2 + 6x + 15 = 0\)[/tex] are:
- [tex]\(a = 3\)[/tex]
- [tex]\(b = 6\)[/tex]
- [tex]\(c = 15\)[/tex]
1. Calculate the discriminant:
The discriminant [tex]\( \Delta \)[/tex] is given by [tex]\( \Delta = b^2 - 4ac \)[/tex]:
[tex]\[ \Delta = 6^2 - 4 \cdot 3 \cdot 15 = 36 - 180 = -144 \][/tex]
2. Determine the square root of the discriminant:
Since the discriminant is negative, the solutions will involve complex numbers. We take the square root of [tex]\(-144\)[/tex]:
[tex]\[ \sqrt{-144} = \sqrt{144} \cdot \sqrt{-1} = 12i \][/tex]
3. Apply the quadratic formula:
Substitute [tex]\(a = 3\)[/tex], [tex]\(b = 6\)[/tex], and [tex]\(\sqrt{\Delta} = 12i\)[/tex] into the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-6 \pm 12i}{2 \cdot 3} = \frac{-6 \pm 12i}{6} = \frac{-6}{6} \pm \frac{12i}{6} = -1 \pm 2i \][/tex]
So, the solutions to the quadratic equation [tex]\(3x^2 + 6x + 15 = 0\)[/tex] are:
[tex]\[ x = -1 + 2i \quad \text{and} \quad x = -1 - 2i \][/tex]
Thus, the correct answer is:
[tex]\[ -1 \pm 2i \][/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients of the equation [tex]\(3x^2 + 6x + 15 = 0\)[/tex] are:
- [tex]\(a = 3\)[/tex]
- [tex]\(b = 6\)[/tex]
- [tex]\(c = 15\)[/tex]
1. Calculate the discriminant:
The discriminant [tex]\( \Delta \)[/tex] is given by [tex]\( \Delta = b^2 - 4ac \)[/tex]:
[tex]\[ \Delta = 6^2 - 4 \cdot 3 \cdot 15 = 36 - 180 = -144 \][/tex]
2. Determine the square root of the discriminant:
Since the discriminant is negative, the solutions will involve complex numbers. We take the square root of [tex]\(-144\)[/tex]:
[tex]\[ \sqrt{-144} = \sqrt{144} \cdot \sqrt{-1} = 12i \][/tex]
3. Apply the quadratic formula:
Substitute [tex]\(a = 3\)[/tex], [tex]\(b = 6\)[/tex], and [tex]\(\sqrt{\Delta} = 12i\)[/tex] into the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-6 \pm 12i}{2 \cdot 3} = \frac{-6 \pm 12i}{6} = \frac{-6}{6} \pm \frac{12i}{6} = -1 \pm 2i \][/tex]
So, the solutions to the quadratic equation [tex]\(3x^2 + 6x + 15 = 0\)[/tex] are:
[tex]\[ x = -1 + 2i \quad \text{and} \quad x = -1 - 2i \][/tex]
Thus, the correct answer is:
[tex]\[ -1 \pm 2i \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.