Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the vertex form of the equation of a parabola given the directrix [tex]\( x = 6 \)[/tex] and the focus [tex]\( (3, -5) \)[/tex], we need to follow these detailed steps:
1. Identify the vertex: The vertex is the midpoint between the focus and the directrix.
- The x-coordinate of the vertex is the midpoint of [tex]\( 6 \)[/tex] (directrix x-coordinate) and [tex]\( 3 \)[/tex] (focus x-coordinate):
[tex]\[ \text{Vertex}_x = \frac{3 + 6}{2} = \frac{9}{2} = 4.5 \][/tex]
- The y-coordinate of the vertex remains the same as the y-coordinate of the focus, which is [tex]\( -5 \)[/tex].
[tex]\[ \text{Vertex coordinates} = (4.5, -5) \][/tex]
2. Calculate the distance [tex]\( p \)[/tex] between the vertex and the focus (or directrix). This distance is crucial for determining the parameter in the equation of the parabola:
[tex]\[ p = |4.5 - 6| = 1.5 \][/tex]
3. Determine the constant [tex]\( a \)[/tex] in the vertex form of the parabola: The vertex form of the equation is given by [tex]\( x = a(y - k)^2 + h \)[/tex], where [tex]\( a = \frac{1}{4p} \)[/tex]:
[tex]\[ a = \frac{1}{4 \times 1.5} = \frac{1}{6} ≈ 0.16666666666666666 \][/tex]
So, the vertex form of the equation of the parabola is:
[tex]\[ x = \frac{1}{6} (y + 5)^2 + 4.5 \][/tex]
Therefore, filling in the boxes, the vertex form of the equation is:
[tex]\[ x = 0.16666666666666666(y + 5)^2 + 4.5 \][/tex]
So the correct answers to fill in the boxes are:
[tex]\[ x =\ \boxed{0.16666666666666666(y + } \ \boxed{5)}^2+ \ \boxed{4.5} \][/tex]
1. Identify the vertex: The vertex is the midpoint between the focus and the directrix.
- The x-coordinate of the vertex is the midpoint of [tex]\( 6 \)[/tex] (directrix x-coordinate) and [tex]\( 3 \)[/tex] (focus x-coordinate):
[tex]\[ \text{Vertex}_x = \frac{3 + 6}{2} = \frac{9}{2} = 4.5 \][/tex]
- The y-coordinate of the vertex remains the same as the y-coordinate of the focus, which is [tex]\( -5 \)[/tex].
[tex]\[ \text{Vertex coordinates} = (4.5, -5) \][/tex]
2. Calculate the distance [tex]\( p \)[/tex] between the vertex and the focus (or directrix). This distance is crucial for determining the parameter in the equation of the parabola:
[tex]\[ p = |4.5 - 6| = 1.5 \][/tex]
3. Determine the constant [tex]\( a \)[/tex] in the vertex form of the parabola: The vertex form of the equation is given by [tex]\( x = a(y - k)^2 + h \)[/tex], where [tex]\( a = \frac{1}{4p} \)[/tex]:
[tex]\[ a = \frac{1}{4 \times 1.5} = \frac{1}{6} ≈ 0.16666666666666666 \][/tex]
So, the vertex form of the equation of the parabola is:
[tex]\[ x = \frac{1}{6} (y + 5)^2 + 4.5 \][/tex]
Therefore, filling in the boxes, the vertex form of the equation is:
[tex]\[ x = 0.16666666666666666(y + 5)^2 + 4.5 \][/tex]
So the correct answers to fill in the boxes are:
[tex]\[ x =\ \boxed{0.16666666666666666(y + } \ \boxed{5)}^2+ \ \boxed{4.5} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.