Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the vertex form of the equation of a parabola given the directrix [tex]\( x = 6 \)[/tex] and the focus [tex]\( (3, -5) \)[/tex], we need to follow these detailed steps:
1. Identify the vertex: The vertex is the midpoint between the focus and the directrix.
- The x-coordinate of the vertex is the midpoint of [tex]\( 6 \)[/tex] (directrix x-coordinate) and [tex]\( 3 \)[/tex] (focus x-coordinate):
[tex]\[ \text{Vertex}_x = \frac{3 + 6}{2} = \frac{9}{2} = 4.5 \][/tex]
- The y-coordinate of the vertex remains the same as the y-coordinate of the focus, which is [tex]\( -5 \)[/tex].
[tex]\[ \text{Vertex coordinates} = (4.5, -5) \][/tex]
2. Calculate the distance [tex]\( p \)[/tex] between the vertex and the focus (or directrix). This distance is crucial for determining the parameter in the equation of the parabola:
[tex]\[ p = |4.5 - 6| = 1.5 \][/tex]
3. Determine the constant [tex]\( a \)[/tex] in the vertex form of the parabola: The vertex form of the equation is given by [tex]\( x = a(y - k)^2 + h \)[/tex], where [tex]\( a = \frac{1}{4p} \)[/tex]:
[tex]\[ a = \frac{1}{4 \times 1.5} = \frac{1}{6} ≈ 0.16666666666666666 \][/tex]
So, the vertex form of the equation of the parabola is:
[tex]\[ x = \frac{1}{6} (y + 5)^2 + 4.5 \][/tex]
Therefore, filling in the boxes, the vertex form of the equation is:
[tex]\[ x = 0.16666666666666666(y + 5)^2 + 4.5 \][/tex]
So the correct answers to fill in the boxes are:
[tex]\[ x =\ \boxed{0.16666666666666666(y + } \ \boxed{5)}^2+ \ \boxed{4.5} \][/tex]
1. Identify the vertex: The vertex is the midpoint between the focus and the directrix.
- The x-coordinate of the vertex is the midpoint of [tex]\( 6 \)[/tex] (directrix x-coordinate) and [tex]\( 3 \)[/tex] (focus x-coordinate):
[tex]\[ \text{Vertex}_x = \frac{3 + 6}{2} = \frac{9}{2} = 4.5 \][/tex]
- The y-coordinate of the vertex remains the same as the y-coordinate of the focus, which is [tex]\( -5 \)[/tex].
[tex]\[ \text{Vertex coordinates} = (4.5, -5) \][/tex]
2. Calculate the distance [tex]\( p \)[/tex] between the vertex and the focus (or directrix). This distance is crucial for determining the parameter in the equation of the parabola:
[tex]\[ p = |4.5 - 6| = 1.5 \][/tex]
3. Determine the constant [tex]\( a \)[/tex] in the vertex form of the parabola: The vertex form of the equation is given by [tex]\( x = a(y - k)^2 + h \)[/tex], where [tex]\( a = \frac{1}{4p} \)[/tex]:
[tex]\[ a = \frac{1}{4 \times 1.5} = \frac{1}{6} ≈ 0.16666666666666666 \][/tex]
So, the vertex form of the equation of the parabola is:
[tex]\[ x = \frac{1}{6} (y + 5)^2 + 4.5 \][/tex]
Therefore, filling in the boxes, the vertex form of the equation is:
[tex]\[ x = 0.16666666666666666(y + 5)^2 + 4.5 \][/tex]
So the correct answers to fill in the boxes are:
[tex]\[ x =\ \boxed{0.16666666666666666(y + } \ \boxed{5)}^2+ \ \boxed{4.5} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.