Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which statements correctly illustrate the addition property of equality, we'll examine each given statement.
1. If [tex]\(a = b\)[/tex], then [tex]\(a + c = b + c\)[/tex]:
- The addition property of equality states that if two expressions are equal, then adding the same value to both expressions maintains the equality. In this case, adding [tex]\(c\)[/tex] to both sides of the equation [tex]\(a = b\)[/tex] results in [tex]\(a + c = b + c\)[/tex]. This is a valid application of the addition property of equality.
2. If [tex]\(x = y\)[/tex], then [tex]\(x + 2 = y - 2\)[/tex]:
- Here, we have [tex]\(x = y\)[/tex]. To maintain equality, we must add or subtract the same value from both sides of the equation. However, adding 2 to one side and subtracting 2 from the other side, results in [tex]\(x + 2\)[/tex] and [tex]\(y - 2\)[/tex], which are not guaranteed to be equal if [tex]\(x = y\)[/tex]. This does not correctly illustrate the addition property of equality.
3. If [tex]\(w + 2 = 7\)[/tex], then [tex]\(w + 2 - 2 = 7 - 2\)[/tex]:
- Starting from the equation [tex]\(w + 2 = 7\)[/tex], subtracting the same value [tex]\(2\)[/tex] from both sides results in [tex]\(w + 2 - 2 = 7 - 2\)[/tex]. This simplifies to [tex]\(w = 5\)[/tex]. This is a correct application of the addition property of equality, demonstrating how equality is maintained when subtracting the same value from both sides.
4. If [tex]\(z - \frac{2}{5} = 9\)[/tex], then [tex]\(z - \frac{2}{5} + \frac{2}{5} = 9 - \frac{2}{5}\)[/tex]:
- From the equation [tex]\(z - \frac{2}{5} = 9\)[/tex], adding the same value [tex]\(\frac{2}{5}\)[/tex] to both sides results in [tex]\(z - \frac{2}{5} + \frac{2}{5} = 9 + \frac{2}{5}\)[/tex]. This simplifies to [tex]\(z = 9 + \frac{2}{5}\)[/tex]. This application correctly uses the addition property of equality by adding [tex]\(\frac{2}{5}\)[/tex] to both sides of the equation.
Therefore, the correct statements that illustrate the addition property of equality are:
- Statement 1: If [tex]\(a = b\)[/tex], then [tex]\(a + c = b + c\)[/tex].
- Statement 3: If [tex]\(w + 2 = 7\)[/tex], then [tex]\(w + 2 - 2 = 7 - 2\)[/tex].
- Statement 4: If [tex]\(z - \frac{2}{5} = 9\)[/tex], then [tex]\(z - \frac{2}{5} + \frac{2}{5} = 9 - \frac{2}{5}\)[/tex].
Thus, the correct statements are:
[tex]\[ \boxed{1, 3, 4} \][/tex]
1. If [tex]\(a = b\)[/tex], then [tex]\(a + c = b + c\)[/tex]:
- The addition property of equality states that if two expressions are equal, then adding the same value to both expressions maintains the equality. In this case, adding [tex]\(c\)[/tex] to both sides of the equation [tex]\(a = b\)[/tex] results in [tex]\(a + c = b + c\)[/tex]. This is a valid application of the addition property of equality.
2. If [tex]\(x = y\)[/tex], then [tex]\(x + 2 = y - 2\)[/tex]:
- Here, we have [tex]\(x = y\)[/tex]. To maintain equality, we must add or subtract the same value from both sides of the equation. However, adding 2 to one side and subtracting 2 from the other side, results in [tex]\(x + 2\)[/tex] and [tex]\(y - 2\)[/tex], which are not guaranteed to be equal if [tex]\(x = y\)[/tex]. This does not correctly illustrate the addition property of equality.
3. If [tex]\(w + 2 = 7\)[/tex], then [tex]\(w + 2 - 2 = 7 - 2\)[/tex]:
- Starting from the equation [tex]\(w + 2 = 7\)[/tex], subtracting the same value [tex]\(2\)[/tex] from both sides results in [tex]\(w + 2 - 2 = 7 - 2\)[/tex]. This simplifies to [tex]\(w = 5\)[/tex]. This is a correct application of the addition property of equality, demonstrating how equality is maintained when subtracting the same value from both sides.
4. If [tex]\(z - \frac{2}{5} = 9\)[/tex], then [tex]\(z - \frac{2}{5} + \frac{2}{5} = 9 - \frac{2}{5}\)[/tex]:
- From the equation [tex]\(z - \frac{2}{5} = 9\)[/tex], adding the same value [tex]\(\frac{2}{5}\)[/tex] to both sides results in [tex]\(z - \frac{2}{5} + \frac{2}{5} = 9 + \frac{2}{5}\)[/tex]. This simplifies to [tex]\(z = 9 + \frac{2}{5}\)[/tex]. This application correctly uses the addition property of equality by adding [tex]\(\frac{2}{5}\)[/tex] to both sides of the equation.
Therefore, the correct statements that illustrate the addition property of equality are:
- Statement 1: If [tex]\(a = b\)[/tex], then [tex]\(a + c = b + c\)[/tex].
- Statement 3: If [tex]\(w + 2 = 7\)[/tex], then [tex]\(w + 2 - 2 = 7 - 2\)[/tex].
- Statement 4: If [tex]\(z - \frac{2}{5} = 9\)[/tex], then [tex]\(z - \frac{2}{5} + \frac{2}{5} = 9 - \frac{2}{5}\)[/tex].
Thus, the correct statements are:
[tex]\[ \boxed{1, 3, 4} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.