Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\(\tan(x)(\tan(x) + 1) = 0\)[/tex], we look for the values of [tex]\(x\)[/tex] that satisfy the equation.
First, let's break the original equation into its factors:
[tex]\[ \tan(x) \cdot (\tan(x) + 1) = 0 \][/tex]
For this product to be zero, at least one of the factors must be zero. This gives us two separate equations to solve:
1. [tex]\(\tan(x) = 0\)[/tex]
2. [tex]\(\tan(x) + 1 = 0\)[/tex]
### Solving [tex]\(\tan(x) = 0\)[/tex]
The tangent function [tex]\(\tan(x)\)[/tex] is zero at integer multiples of [tex]\(\pi\)[/tex]:
[tex]\[ x = n\pi \quad \text{for any integer } n. \][/tex]
### Solving [tex]\(\tan(x) + 1 = 0\)[/tex]
Rewriting the equation, we get:
[tex]\[ \tan(x) = -1 \][/tex]
The tangent function [tex]\(\tan(x)\)[/tex] equals [tex]\(-1\)[/tex] at angles where [tex]\(x\)[/tex] is an odd multiple of [tex]\(\frac{\pi}{4}\)[/tex]. Therefore:
[tex]\[ x = \frac{3\pi}{4} + n\pi \quad \text{for any integer } n. \][/tex]
Combining both solutions, we obtain:
[tex]\[ x = n\pi \quad \text{and} \quad x = \frac{3\pi}{4} + n\pi \quad \text{for any integer } n. \][/tex]
Now we match these combined solutions with the given answer choices:
[tex]\[ \text{A. } x= \pm n\pi, \quad x=\frac{\pi}{4} \pm n\pi \][/tex]
[tex]\[ \text{B. } x=\frac{\pi}{3} \pm 2 \pi n, \quad x=\frac{3 \pi}{4} \pm 2 \pi n \][/tex]
[tex]\[ \text{C. } x=\pm \pi n, \quad x=\frac{\pi}{2} \pm 2 \pi n \][/tex]
[tex]\[ \text{D. } x= \pm \pi n, \quad x=\frac{3 \pi}{4} \pm \pi n \][/tex]
The combined solutions [tex]\(x = n\pi \quad \text{and} \quad x = \frac{3\pi}{4} + n\pi\)[/tex] correspond to choice D:
[tex]\[ \text{D. } x= \pm \pi n, x=\frac{3 \pi}{4} \pm \pi n \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
First, let's break the original equation into its factors:
[tex]\[ \tan(x) \cdot (\tan(x) + 1) = 0 \][/tex]
For this product to be zero, at least one of the factors must be zero. This gives us two separate equations to solve:
1. [tex]\(\tan(x) = 0\)[/tex]
2. [tex]\(\tan(x) + 1 = 0\)[/tex]
### Solving [tex]\(\tan(x) = 0\)[/tex]
The tangent function [tex]\(\tan(x)\)[/tex] is zero at integer multiples of [tex]\(\pi\)[/tex]:
[tex]\[ x = n\pi \quad \text{for any integer } n. \][/tex]
### Solving [tex]\(\tan(x) + 1 = 0\)[/tex]
Rewriting the equation, we get:
[tex]\[ \tan(x) = -1 \][/tex]
The tangent function [tex]\(\tan(x)\)[/tex] equals [tex]\(-1\)[/tex] at angles where [tex]\(x\)[/tex] is an odd multiple of [tex]\(\frac{\pi}{4}\)[/tex]. Therefore:
[tex]\[ x = \frac{3\pi}{4} + n\pi \quad \text{for any integer } n. \][/tex]
Combining both solutions, we obtain:
[tex]\[ x = n\pi \quad \text{and} \quad x = \frac{3\pi}{4} + n\pi \quad \text{for any integer } n. \][/tex]
Now we match these combined solutions with the given answer choices:
[tex]\[ \text{A. } x= \pm n\pi, \quad x=\frac{\pi}{4} \pm n\pi \][/tex]
[tex]\[ \text{B. } x=\frac{\pi}{3} \pm 2 \pi n, \quad x=\frac{3 \pi}{4} \pm 2 \pi n \][/tex]
[tex]\[ \text{C. } x=\pm \pi n, \quad x=\frac{\pi}{2} \pm 2 \pi n \][/tex]
[tex]\[ \text{D. } x= \pm \pi n, \quad x=\frac{3 \pi}{4} \pm \pi n \][/tex]
The combined solutions [tex]\(x = n\pi \quad \text{and} \quad x = \frac{3\pi}{4} + n\pi\)[/tex] correspond to choice D:
[tex]\[ \text{D. } x= \pm \pi n, x=\frac{3 \pi}{4} \pm \pi n \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.