Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which table represents a linear function, we need to check the consistency of the differences between the successive pairs of points in each table. A linear function will have constant differences between its [tex]$y$[/tex]-values when the [tex]$x$[/tex]-values are incremented consistently. Let's analyze each table:
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & 1 \frac{1}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
Calculate the differences between successive [tex]$y$[/tex] values:
- Between [tex]$(1, \frac{1}{2})$[/tex] and [tex]$(2, 1)$[/tex]: [tex]\(\frac{1 - \frac{1}{2}}{2-1} = \frac{\frac{1}{2}}{1} = \frac{1}{2}\)[/tex]
- Between [tex]$(2, 1)$[/tex] and [tex]$(3, 1.5)$[/tex]: [tex]\(\frac{1.5 - 1}{3-2} = \frac{0.5}{1} = \frac{1}{2}\)[/tex]
- Between [tex]$(3, 1.5)$[/tex] and [tex]$(4, 2)$[/tex]: [tex]\(\frac{2 - 1.5}{4-3} = \frac{0.5}{1} = \frac{1}{2}\)[/tex]
Since the differences are consistent, Table 1 represents a linear function.
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 1 \\ \hline 2 & \frac{1}{2} \\ \hline 3 & \frac{1}{3} \\ \hline 4 & \frac{1}{4} \\ \hline \end{array} \][/tex]
Calculate the differences between successive [tex]$y$[/tex] values:
- Between [tex]$(1, 1)$[/tex] and [tex]$(2, \frac{1}{2})$[/tex]: [tex]\(\frac{\frac{1}{2} - 1}{2-1} = \frac{-\frac{1}{2}}{1} = -\frac{1}{2}\)[/tex]
- Between [tex]$(2, \frac{1}{2})$[/tex] and [tex]$(3, \frac{1}{3})$[/tex]: [tex]\(\frac{\frac{1}{3} - \frac{1}{2}}{3-2} = \frac{-\frac{1}{6}}{1} = -\frac{1}{6}\)[/tex]
- Between [tex]$(3, \frac{1}{3})$[/tex] and [tex]$(4, \frac{1}{4})$[/tex]: [tex]\(\frac{\frac{1}{4} - \frac{1}{3}}{4-3} = \frac{-\frac{1}{12}}{1} = -\frac{1}{12}\)[/tex]
Since the differences are not consistent, Table 2 does not represent a linear function.
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 9 \\ \hline 3 & 13 \\ \hline 4 & 21 \\ \hline \end{array} \][/tex]
Calculate the differences between successive [tex]$y$[/tex] values:
- Between [tex]$(1, 7)$[/tex] and [tex]$(2, 9)$[/tex]: [tex]\(\frac{9 - 7}{2-1} = \frac{2}{1} = 2\)[/tex]
- Between [tex]$(2, 9)$[/tex] and [tex]$(3, 13)$[/tex]: [tex]\(\frac{13 - 9}{3-2} = \frac{4}{1} = 4\)[/tex]
- Between [tex]$(3, 13)$[/tex] and [tex]$(4, 21)$[/tex]: [tex]\(\frac{21 - 13}{4-3} = \frac{8}{1} = 8\)[/tex]
Since the differences are not consistent, Table 3 does not represent a linear function.
### Table 4
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0 \\ \hline 2 & 6 \\ \hline 3 & 16 \\ \hline 4 & 30 \\ \hline \end{array} \][/tex]
Calculate the differences between successive [tex]$y$[/tex] values:
- Between [tex]$(1, 0)$[/tex] and [tex]$(2, 6)$[/tex]: [tex]\(\frac{6 - 0}{2-1} = \frac{6}{1} = 6\)[/tex]
- Between [tex]$(2, 6)$[/tex] and [tex]$(3, 16)$[/tex]: [tex]\(\frac{16 - 6}{3-2} = \frac{10}{1} = 10\)[/tex]
- Between [tex]$(3, 16)$[/tex] and [tex]$(4, 30)$[/tex]: [tex]\(\frac{30 - 16}{4-3} = \frac{14}{1} = 14\)[/tex]
Since the differences are not consistent, Table 4 does not represent a linear function.
Therefore, only Table 1 represents a linear function.
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & 1 \frac{1}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
Calculate the differences between successive [tex]$y$[/tex] values:
- Between [tex]$(1, \frac{1}{2})$[/tex] and [tex]$(2, 1)$[/tex]: [tex]\(\frac{1 - \frac{1}{2}}{2-1} = \frac{\frac{1}{2}}{1} = \frac{1}{2}\)[/tex]
- Between [tex]$(2, 1)$[/tex] and [tex]$(3, 1.5)$[/tex]: [tex]\(\frac{1.5 - 1}{3-2} = \frac{0.5}{1} = \frac{1}{2}\)[/tex]
- Between [tex]$(3, 1.5)$[/tex] and [tex]$(4, 2)$[/tex]: [tex]\(\frac{2 - 1.5}{4-3} = \frac{0.5}{1} = \frac{1}{2}\)[/tex]
Since the differences are consistent, Table 1 represents a linear function.
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 1 \\ \hline 2 & \frac{1}{2} \\ \hline 3 & \frac{1}{3} \\ \hline 4 & \frac{1}{4} \\ \hline \end{array} \][/tex]
Calculate the differences between successive [tex]$y$[/tex] values:
- Between [tex]$(1, 1)$[/tex] and [tex]$(2, \frac{1}{2})$[/tex]: [tex]\(\frac{\frac{1}{2} - 1}{2-1} = \frac{-\frac{1}{2}}{1} = -\frac{1}{2}\)[/tex]
- Between [tex]$(2, \frac{1}{2})$[/tex] and [tex]$(3, \frac{1}{3})$[/tex]: [tex]\(\frac{\frac{1}{3} - \frac{1}{2}}{3-2} = \frac{-\frac{1}{6}}{1} = -\frac{1}{6}\)[/tex]
- Between [tex]$(3, \frac{1}{3})$[/tex] and [tex]$(4, \frac{1}{4})$[/tex]: [tex]\(\frac{\frac{1}{4} - \frac{1}{3}}{4-3} = \frac{-\frac{1}{12}}{1} = -\frac{1}{12}\)[/tex]
Since the differences are not consistent, Table 2 does not represent a linear function.
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 9 \\ \hline 3 & 13 \\ \hline 4 & 21 \\ \hline \end{array} \][/tex]
Calculate the differences between successive [tex]$y$[/tex] values:
- Between [tex]$(1, 7)$[/tex] and [tex]$(2, 9)$[/tex]: [tex]\(\frac{9 - 7}{2-1} = \frac{2}{1} = 2\)[/tex]
- Between [tex]$(2, 9)$[/tex] and [tex]$(3, 13)$[/tex]: [tex]\(\frac{13 - 9}{3-2} = \frac{4}{1} = 4\)[/tex]
- Between [tex]$(3, 13)$[/tex] and [tex]$(4, 21)$[/tex]: [tex]\(\frac{21 - 13}{4-3} = \frac{8}{1} = 8\)[/tex]
Since the differences are not consistent, Table 3 does not represent a linear function.
### Table 4
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0 \\ \hline 2 & 6 \\ \hline 3 & 16 \\ \hline 4 & 30 \\ \hline \end{array} \][/tex]
Calculate the differences between successive [tex]$y$[/tex] values:
- Between [tex]$(1, 0)$[/tex] and [tex]$(2, 6)$[/tex]: [tex]\(\frac{6 - 0}{2-1} = \frac{6}{1} = 6\)[/tex]
- Between [tex]$(2, 6)$[/tex] and [tex]$(3, 16)$[/tex]: [tex]\(\frac{16 - 6}{3-2} = \frac{10}{1} = 10\)[/tex]
- Between [tex]$(3, 16)$[/tex] and [tex]$(4, 30)$[/tex]: [tex]\(\frac{30 - 16}{4-3} = \frac{14}{1} = 14\)[/tex]
Since the differences are not consistent, Table 4 does not represent a linear function.
Therefore, only Table 1 represents a linear function.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.