Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's simplify the expression [tex]\((1 - 5i)(3 + 7i)\)[/tex].
We use the distributive property (also known as the FOIL method for binomials):
[tex]\[ (1 - 5i)(3 + 7i) = 1 \cdot 3 + 1 \cdot 7i + (-5i) \cdot 3 + (-5i) \cdot 7i \][/tex]
Let's calculate each term separately:
1. The product of the real parts:
[tex]\[ 1 \cdot 3 = 3 \][/tex]
2. The product of the real part of the first complex number and the imaginary part of the second:
[tex]\[ 1 \cdot 7i = 7i \][/tex]
3. The product of the imaginary part of the first complex number and the real part of the second:
[tex]\[ -5i \cdot 3 = -15i \][/tex]
4. The product of the imaginary parts:
[tex]\[ -5i \cdot 7i = -35i^2 \][/tex]
Recall that [tex]\(i^2 = -1\)[/tex]. Therefore:
[tex]\[ -35i^2 = -35 \cdot (-1) = 35 \][/tex]
Now, let's combine all the calculated parts:
[tex]\[ 3 + 7i - 15i + 35 \][/tex]
Combine the real parts (3 and 35):
[tex]\[ 3 + 35 = 38 \][/tex]
Combine the imaginary parts (7i and -15i):
[tex]\[ 7i - 15i = -8i \][/tex]
Thus, the simplified expression is:
[tex]\[ 38 - 8i \][/tex]
So the correct answer is [tex]\(38 - 8i\)[/tex].
The choice corresponds to:
[tex]\[ \boxed{38 - 8i} \][/tex]
We use the distributive property (also known as the FOIL method for binomials):
[tex]\[ (1 - 5i)(3 + 7i) = 1 \cdot 3 + 1 \cdot 7i + (-5i) \cdot 3 + (-5i) \cdot 7i \][/tex]
Let's calculate each term separately:
1. The product of the real parts:
[tex]\[ 1 \cdot 3 = 3 \][/tex]
2. The product of the real part of the first complex number and the imaginary part of the second:
[tex]\[ 1 \cdot 7i = 7i \][/tex]
3. The product of the imaginary part of the first complex number and the real part of the second:
[tex]\[ -5i \cdot 3 = -15i \][/tex]
4. The product of the imaginary parts:
[tex]\[ -5i \cdot 7i = -35i^2 \][/tex]
Recall that [tex]\(i^2 = -1\)[/tex]. Therefore:
[tex]\[ -35i^2 = -35 \cdot (-1) = 35 \][/tex]
Now, let's combine all the calculated parts:
[tex]\[ 3 + 7i - 15i + 35 \][/tex]
Combine the real parts (3 and 35):
[tex]\[ 3 + 35 = 38 \][/tex]
Combine the imaginary parts (7i and -15i):
[tex]\[ 7i - 15i = -8i \][/tex]
Thus, the simplified expression is:
[tex]\[ 38 - 8i \][/tex]
So the correct answer is [tex]\(38 - 8i\)[/tex].
The choice corresponds to:
[tex]\[ \boxed{38 - 8i} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.