Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the distance between two points in a Cartesian plane, we can use the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
We are given two points: [tex]\((1, -2)\)[/tex] and [tex]\((2, 4)\)[/tex].
1. Identify the coordinates:
[tex]\[ (x_1, y_1) = (1, -2) \quad \text{and} \quad (x_2, y_2) = (2, 4) \][/tex]
2. Calculate the difference in the [tex]\(x\)[/tex]-coordinates:
[tex]\[ x_2 - x_1 = 2 - 1 = 1 \][/tex]
Then, square the difference:
[tex]\[ (x_2 - x_1)^2 = 1^2 = 1 \][/tex]
3. Calculate the difference in the [tex]\(y\)[/tex]-coordinates:
[tex]\[ y_2 - y_1 = 4 - (-2) = 4 + 2 = 6 \][/tex]
Then, square the difference:
[tex]\[ (y_2 - y_1)^2 = 6^2 = 36 \][/tex]
4. Add the squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 1 + 36 \][/tex]
5. Take the square root of the sum to find the distance:
[tex]\[ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{1 + 36} = \sqrt{37} \][/tex]
Therefore, the expression that correctly represents the distance between the points [tex]\((1, -2)\)[/tex] and [tex]\((2, 4)\)[/tex] is:
C. [tex]\(\sqrt{(1-2)^2 + (-2-4)^2}\)[/tex]
The simplified answer to this expression gives us a distance of [tex]\(\sqrt{37}\)[/tex], and this corresponds to choice C, which is the correct expression for calculating the distance between the points [tex]\((1, -2)\)[/tex] and [tex]\((2, 4)\)[/tex].
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
We are given two points: [tex]\((1, -2)\)[/tex] and [tex]\((2, 4)\)[/tex].
1. Identify the coordinates:
[tex]\[ (x_1, y_1) = (1, -2) \quad \text{and} \quad (x_2, y_2) = (2, 4) \][/tex]
2. Calculate the difference in the [tex]\(x\)[/tex]-coordinates:
[tex]\[ x_2 - x_1 = 2 - 1 = 1 \][/tex]
Then, square the difference:
[tex]\[ (x_2 - x_1)^2 = 1^2 = 1 \][/tex]
3. Calculate the difference in the [tex]\(y\)[/tex]-coordinates:
[tex]\[ y_2 - y_1 = 4 - (-2) = 4 + 2 = 6 \][/tex]
Then, square the difference:
[tex]\[ (y_2 - y_1)^2 = 6^2 = 36 \][/tex]
4. Add the squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 1 + 36 \][/tex]
5. Take the square root of the sum to find the distance:
[tex]\[ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{1 + 36} = \sqrt{37} \][/tex]
Therefore, the expression that correctly represents the distance between the points [tex]\((1, -2)\)[/tex] and [tex]\((2, 4)\)[/tex] is:
C. [tex]\(\sqrt{(1-2)^2 + (-2-4)^2}\)[/tex]
The simplified answer to this expression gives us a distance of [tex]\(\sqrt{37}\)[/tex], and this corresponds to choice C, which is the correct expression for calculating the distance between the points [tex]\((1, -2)\)[/tex] and [tex]\((2, 4)\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.